
fh FQ.E COPY
BBN Systems and Technologies Corporation
A Subsidiary of Bolt Beranek and Newman Inc.

AD-A201 910

Report No. 6937

Research in Knowledge Representation L
For Natural Language Communication and
Planning Assistance

Final Report

18 March 1985 to 30 September 1988

B. Goodman, B. Grosz, A. Haas, D. Litman, T. Reinhardt,
C Sidner, M. Vilain, R. Weischedel, C. Whipple L

DTIC
ELECTED

Prepared for: C NOV 3 0 ft
Defense Advanced Research Projects Agency D

98 11 :9 9102

iI-

UNCLASSIFIED
SECURITV CLASSIFICATION OF TNeS PAGI (Wim. De tme

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

R.EIICPORT mumllk " .. OV ACCISOMN NO. I. RECIPIENT'S CATALOG NUMUER

I 6937

4. TITLE (and 11"fiffe) S. TYPE OF REPORT & PERIOD COvEREO

Research in Knowledge Representation for Natural Final Report

Language Communication and Planning 3/85-9188

Assistance - Final Report 6. PERFORMING ONG. REPORT umetR

6937
7. AUTNORaI S. CONTRACT OR GRANT NUMBER,.)

*, B. Goodman, B. Grosz, A. Haas, D. Litman,
T. Reinhardt, C. Sidner, M. Vilain, NOO0l4-85-C-0079
R. Weischedel, C. Whipple

S. PERFORMING ORGANIZATION NAME AND ADDRESS to. PROGRAM ELEMENT. PROJECT TASK

BBN Systems and Technologies Corporation AREA & .0K UN IT Nu-el.

10 Moulton Street
Cambridge, Ma. 02138

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research November 1988
Department of Navy 13. NUM§ER Of PAGES

Arlington, Va. 22217 194
14. MONITORING AGENCY NAME I ADDRIESS(Of dffuerent frm Conti'WII0 Office) IS. SECURITY CLASS. (of this rPort)

F UNCLASSIFIED

ldl. OECLASSFICATION DOWNGRADING
SCNEDULE

1. OISTRI@UTION STATEMENT (of tl Report)

Distribution of this document is unlimited. It may be released to the Clearinghouse,
Department of Commerce, for sale to the general public.

17. OISTRIOUTION STATEMENT (of the abstralt entered In 11oc¢ 20, If iifferent from Report)

19 SUPPLEMENTARY NOTES

Il. KEY WORDS (ConDinue on r.erse ide It noeow And 10001 l by bICA nimbr)

Artificial Intelligence, Discourse, Domain Model, Intelligent Interfaces, Knowledge
Representation, Natural Language Understanding, Parallel Processing, Planning, Plan
Recognition, Propositional Attitudes, Reasoning, Semantics, Speech Understanding, Truth
Maintenance System

20. AISTRACT fCoIfnwe an revees aide It neceeei t, dadtIfy by block Meib)

BBN's DARPA project in Knowledge Representation for Natural Language
Communication and Planning Assistance has two primary objectives. 1) To perform
research on aspects of the interaction between users who are making complex descisions
and systems that are assisting them with their task. In particular, this research is focused
on communication and the reasoning required for performing its underlying task of
discourse processing, planning and plan recognition and communication repair. 2) Based

DO 1473 EDrio Oi I NOV 06 IS SOLIT UNCLASSIFIED
SECURITY CLASSIFICATION Of TwIS PAGE r(Who Data E.'*C,@d

. - 1 1 1 i - ..m ..w i m mm mm n.- =- - -J

UNCLASSIFIED
SCCUmlY CL&NIgVgCATI8O 0ei THS AG en VWS. Ouia CaemIP

27 on the research objectives to build tools for communication, plan recognition, and planning
assistance and for the -representation of knowledge and reasoning that underlie all of these
processes.)

This final report summarizes BBN's research activities performed under this contract in the
areas of knowledge representation and speech and natural language. In particular, the
report discusses our work in the areas of knowledge representation, planning, and
discourse modelling. We describe a parallel truth maintenance system. We provide an
extension to the sentential theory of propositional attitudes by adding a sentential semantics.
The report also contains a description of our research in discourse modelling in the areas of
planning and pran recognition. -We describe a new compositional form of plan recognition
that integrates planning and plan i;cognition. We also discuss multi-agent collaboration in
the planning process to develop a shared plan. The report also describes recent attempts at
generalizing the modelling of domains that is central to speech and natural language
processing. We describe as part of that effort an experiment using a dictionary to build a
taxonomy of primitive concepts. We conclude by documenting publications and
presentations by members of the researcb group over the course of the contract.

Accssion For
NTIS GRA&I27,

DTIC TAB -

Unannounced]justification - .

Availability Codes U
Avai'I and/or

Diat Special

Ei-/

UNCLASSIFIED
SECUITY CLASIFICATION OF THIS PAGE (toe Does EUnf@,*d)

I

RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL
LANGUAGE COMMUNICATION AND PLANNING ASSISTANCE

Final Report
18 March 1985 to 30 September 1988

Principal Investigator:
Dr. Bradley A. Goodman

m

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

ARPA Order No. 3414 Contract No. N00014-85-C-0079

Effective Date of Contract Contract Expiration Date
18 March 1985 30 September 1988

Amount of Contract Scientific Officer
$3,476,702 Dr. Alan R. Meyowitz

This research was supported by the Advanced Research Projects Agency of the Department

of Defense and was monitored by ONR under Contract No. N00014-85-C-0079. The

views and conclusions contained in this document are those of the authors and should not

be interpreted as necessarily representing the official policies, either expressed or implied,

of the Defense Research Projects Agency or the U.S. Government.

Copyright © 1988 BBN Systems and Technologies Corporation

Report No. 6937 BBN Systems and Technologies Corporation

TABLE OF CONTENTS

1. Executive Summary ... 1

1.1 Research Focus ... 1

1.1.1 Them e .. I

1.1.2 Spoken and Natural Language Communication 2

1.1.3 Planning Assistance .. 2

1.2 Significant Results during the Course of the Contract 3

1.3 Overview of this Report ... 6

2. A Parallel Truth Maintenance System 7

2.1 Introduction ... 7

2.2 The problem and its properties 8

2.3 The Butterfly and Butterfly Lisp 11

2.4 A parallel tins algorithm .. 12

2.5 Defeating the Sequentiality of Truth Maintenance 16

2.6 Additional Concurrency Strategies 18

2.7 Heterogeneous Concurrency .. 20

2.8 Performance Results .. 21

2.9 Cross-applicability of These Results 22

i_

BBN Systems and Technologies Corporation Report No. 693'

3. Sentential Semantics for Propositional Attitudes 31

3.1 The Notion of a Thought Language 31

3.2 Vivid Designators ... 37

3.3 The Thought Language of our Fragment 40

3.4 The Fragment ... 48

3.4.1 Quantification ... 48

3.4.2 The Rules ... 55

3.5 C onclusion .. 71

4. Aiding Design with Constructive Plan

R ecognition ... 7 7

4.1 Introduction ... 77

4.2 Extending Plan Recognition 79

4.2.1 Taking Plan Recognition Seriously 80

4.2.2 Constructive Plan Recognition 83

4.2.3 An Example ... 85

4.2.4 Implications of CPR .. 88

4.3 Aiding Design with Plan Recognition 89

4.3.1 Taking Design Seriously ... 90

4.3.2 Constructive Plan Recognition for Design 91

4.3.3 An Example - Designing a Butane Isomerization Process 98

4.4 Sum m ary .. 103

ii

LReport No. 6937 BBN Systems and Technologies Corporation

5. Distributed Know-How and Acting.............. 111

5.1 Introduction...111II

5.2 The Collaborative Planning Process....................... 114

5.3 Shared Plans .. 118

5.3.1 Simultaneous Action......................................120

5.3.2 Conjoined Actions..124

5.3.3 Sequences of Actions......................................126

5.3.4 Enablement.. 127

5.4 Evidence for SharedPlans 127

5.5 Concluding Comments.................................... 134

6. Domain Modelling for a Natural Language

Processor .. 139

6. 1 Introduction... 140

*6.2 Representation Commitments 141

6.3 Some Global Ontological Decisions 144

6.4 Use of Domain Model in Janus 146

6.5 Experience with a General-Purpose Domain Model 148

6.5.1 Basic Vocabulary ... 148

6.5.3 Abstractions... 150

6.6 Conclusions... 150

BBN Systems and Technologies Corporation Report No. 6937 -

7. Summary of Conclusions from the Longman's

Taxonomy Experiment 157

7.1 Overview of Experiment ... 157

7.2 Method ... 157

7.3 R esults ... 160

7.3.1 The Limits of Logic-Based Representation 161

7.3.2 Synonyms, Aliases ... 163

7.3.3 Definitional Weaknesses ... 166

7.3.4 Using Roles More Effectively 166

7.3.5 Idiosyncratic Usage .. 167

7.3.6 Heterarchies vs. Hierarchies .. 168

7.3.7 Less Complex Interrelations ... 168

7.3.8 Definitional vs. Assertional Knowledge 169

7.4 Final Commentary .. 169

8. Presentations and Publications 173

8.1 List of Presentations .. 173

8.2 List of Publications ... 179

8.3 Forthcoming Papers .. 183

Iv

Report No. 6937 BBN Systems and Technologies Corporation

1. Executive Summary

This chapter summarizes the research directions followed during the course of the contract

and highlights some of our accomplishments. The Knowledge Representation for Natural

Language Communication and Planning Assistance contract grew out of a long history of

DARPA supported knowledge representation and natural language contracts at BBN

beginning in 1977. Those contracts provided many advances in the areas of knowledge

representation and natural language that set the stage for the research conducted during the

course of this contract. The earlier research as well as that conducted under this contract is

now being applied not just to natural language systems but also to spoken language

systems.

1.1 Research Focus

In this section we lay out the primary areas of research that were investigated under this

contract.

1.1.1 Theme

The research plan we followed in this contract was aimed toward fundamental problems of

Knowledge Representation and Reasoning relevant to Spoken and Natural Language

Communication and Planning Assistance. Central to this plan was our research in the

representation of plans, plan recognition, plan formation, reasoning about plans and

actions, and modelling the discourse. The exploration of these research topics required

1|

BBN Systems and Technologies Corporation Report No. 6937

investigating both short-term as well as long-term solutions. We transferred some of our

research results to other DARPA-supported activity at BBN, such as the BBN spoken

language system (SLS).

1.1.2 Spoken and Natural Language Communication

Central to extension of spoken or natural language understanding systems from handling

single (isolated) utterances to coherent dialogue is the modeling of discourse. Plans that

represent the intentions of the speaker and listener are a significant component of such a

model. The representation of user beliefs is an important constituent of these plans. The

process of inferring the user's plans from the user's utterances (plan recognition) is the key

to understanding dialogues. To further our research in understanding the intentions of

utterances we investigated the ability to understand in the face of miscommunication.

Reference identification is another important element of spoken and natural language

processing that benefits from discourse modelling. Reference provides a handle on the

interpretation of utterances by determining the objects in the world being referred to by the

noun phrases and pronouns.

1.1.3 Planning Assistance

Planning is another element underlying natural language communication. A major thrust of

our research was the extension of knowledge representation systems for representing

beliefs of agents, actions, time, continuous proccsses, partial hypothetical plans and

multiple agents. The knowledge representation and inference mechanisms developed are

useful not just for work in planning but they provide the fundamental underpinnings to

2

Report No. 6937 BBN Systems and Technologies Corporation

parts of our spoken language system. In conjunction with our knowledge representation

research, we also explored the equally critical area of knowledge acquisition.

1.2 Significant Results during the Course of the Contract

Our research during the past three and one-half years has addressed major aspects of these

problems resulting in some significant results.

We developed the KL-Two hybrid knowledge representation language, integrating

the NIKL representation system with RUP ("Reasoning Utility Package") through

the PENNI interface.

We developed a new representation formalism that includes fluids modelled in a

discrete manner based on a notion called granules and processes that are

continuous and modelled discretely in a manner that permits serial as well as

concurrent composition.

We have developed a logic that permits representation of nested beliefs of several

agents, allows quantification with various scoping, and has efficient reasoning

based on first-order unification.

As an initial exercise in parallel programming, we have developed a parallel

unification based parser for a grammar, a grammar for English with excellent

coverage, and a running program on a Vax, Symbolics and a parallel version on

the BBN Butterfly. A serial version of this parser became the basis of the CFG

parser used in the BBN spoken language system.

3

- i f -It I " | [] I - if l tit I I I I fll I

BBN Systems and Technologies Corporation Report. No. 6937 --

We developed a richly expressive intensional logic language for capturing the

semantics of natural language sentences, including modality, tense and context-

dependence. This semantic is being employed in the BBN spoken language

system.

We investigated autoepistemic reasoning, especially its relation to other kinds of

non-monotonic reasoning.

We developed a model of discourse structure including attention an intention.

We extended our discourse theory to model collaborative interaction between a user

and a system. Knowledge of shared plans is incorporated in the model.

We analyzed and understood miscommunication phenomena, surrounding the use

of noun phrase references, in actual videotaped dialogues.

We demonstrated a reference mechanism based on relaxation matching and

implemented in the KL-Two knowledge representation language.

We implemented an incremental "keyhole" plan recognizer. We then modified it

from "keyhole" recognition to "intended" recognition so that it fits in with our

model of incremental intended plan recognition.

4

Report No. 6937 BBN Systems and Technologies Corporation

We integrated our plan recognition algorithm into a data base and graphics interface

to demonstrate how plan recognition facilitates communication and information

retrieval

We explored issues relating to the representations of.plans, keeping in mind the

dual use of plans for plan recognition and planning. This involved providing plan

representation with a richer semantics and a representation for actions.

We began expanding our current plan recognition algorithm to handle

miscommunication situations. That expansion involves developing a "contructive"

plan recognition algorithm that ties together the contruction and recognition of

plans, i.e., it can build the plans that it will recognize. This allows one to

recognize novel plans as well as helping detect and recover from

miscommunication of intention in the recognition process.

We began our investigation of critical dimensions of such a constructive model of

plan recognition by looking at cognitive science models of planning and problem

solving in complex and ill-structured domains.

We began the process of integrating our discourse components into a spoken-

language system. In particular, we began the process of adding reference

identification and plan recognition components to such a system.

We explored the acquisition of knowledge for domain modelling for speech and

natural language systems.

5

BBN Systems and Technologies Corporation Report No. 6937 4

1.3 Overview of this Report

We provide in the rest of the report articles that describe a cumulation of our research under

the project. Chapter 2 describes a multiprocessor-based truth maintenance system that was

developed for a MIMD (multiple instruction/multiple data) multiprocessor. We discuss the

algorithms underlying the system and strategies for increasing the concurrency of the

system. In Chapter 3, we provide an extension to the sentential theory of propositional

attitudes by adding a sentential semantics. We use this extension to present a formal

semantics for a fragment of English. Chapter 4 describes a compositional form of plan

recognition, constructive plan recognition, that removes the completeness assumption

imposed by many standard plan recognition algorithms and that is conducive to the

detection and correction of miscommunication in user's plans. The new formulation

addresses the issue of novel plans making it an ideal candidate for providing robustness in

plan-based systems. In Chapter 5, we discuss intelligent agents that can collaborate with

other agents in the design and performance of plans to achieve shared objectives. We

describe how to extend multi-agent planning systems to allow for collaboration in the

planning process. Chapters 6 and 7 describe some recent attempts at generalizing the

modelling of domains that is central to speech and natural language processing. We

illustrate one such attempt by describing an experiment we carried out using a dictionary to

build a taxonomy of primitive concepts. Finally, in Chapter 8, we detail the publications

and presentations made by our group during the course of the project.

A
6

Report No. 6937 BBN Systems and Technologies Corporation

2. A Parallel Truth Maintenance System

Marc Vilain, BBN Systems and Technologies Corporation

Abstract: This paper is concerned with multiprocessor-based truth
maintenance systems, focussing on a monotonic single-context
system. MIMD algorithms underlying this system are described, and
their theoretical characteristics are discussed. Strategies for
increasing the concurrency of the system are then considered in
detail. Finally, these results are considered in the light of alternative
models of truth maintenance and of alternative parallel architectures.

2.1 Introduction

The truth maintenance system, or TMS, is a common artificial intelligence programming

technique. This widespread acceptance, however, is matched by widespread disagreement

over optimal truth maintenance strategies. The TMS literature describes systems that vary

along dimensions of monotonicity, complexity of support constraints, incrementality of

context switches, and others. Disagreement also exists as to how and how well truth

maintenance systems may be implemented on parallel hardware.

One factor contributing to this disagreement is the plurality of competing TMS models that

might be offered for parallel implementations. The discussion is further muddled by the

converse factor: the large number of multiprocessor architectures in which a parallel TMS

might be embedded. In this paper, I do not attempt to resolve the issue in general, but

7

BBN Systems and Technologies Corporation Report No. 6937

rather focus on a particular TIMS, as implemented on a particular machine. The TMS in

question is a single-context monotonic system derived from McAllester's RUP [McAllester

80, 84]. The hardware on which I've been exploring parallel versions of this system is the

Butterflym multiprocessor, a MIMD (multiple instruction/multiple data) machine that

supports up to 256 independent processors with fully shared memory.

The results of this study are briefly as follows. Although unfavorable worst case bounds

exist on the degree to which a TMS may be made parallel, natural sources of concuriency

arise in the TMS. These range from the straightforward (e.g., adding simultaneous

assertions) to the unexpected (e.g., running the TMS concurrently with the program in

which it is embedded). Additionally, truth maintenance in this TMS is equivalent to

constraint propagation in RCLP [Mackworth 77], and these results generalize to this

problem and to its numerous analogues. Finally, these results carry over to some degree to

other TMS models, and to other MIMD architectures, but it is unclear how applicable they

are to SIMD (single instruction/multiple data) models of parallel computing.

2.2 The problem and its properties

Abstractly, the role of a TMS is to maintain consistent a program's interdependent "beliefs".

In McAllester's model, which my work takes as a premise, beliefs are simply ground

propositions (predicate calculus expressions with no quantifiers or variables). The

interdependencies between beliefs are expressed as a database of logical clauses, each of

which is a disjunct of literals, i.e.,positive or negative propositions.

8

Report No. 6937 BBN Systems and Technologies Corporation

Figure 1: Propositional Constraint Graph

(FATHER Jack) (HEADACHELESS Jack)

(MALE Jack) (PARENT Jack) (CHILD Jack Jill)

Clauses:
(not (CHILD Jack Jill)) or (PARENT Jack)
(not (PARENT Jack)) or (not (HEADACHELESS Jack))
(not (MALE Jack)) or (not (PARENT Jack)) or (FATHER Jack)

i. e.,(CHILD Jack Jill) -> (PARENT Jack)
(not ((PARENT Jack) and (HEADACHELESS Jack)))
((MALE Jack) and (PARENT Jack)) -> (FATHER Jack)

N.B.: Arrowheads of links in graph indicate positive literals in constraints.

Propositions have a truth status which is drawn from the conventional set true and false,

augmented by the undetermined truth value unknown1 . Truths are either assigned to

propositions by user assertions, or as a result of truth maintenance, which in this TMS is

simply deduction. Deduction is readily implemented here by Waltz-style constraint

propagation [Waltz 75]. To each proposition corresponds a node in a constraint graph, and

to each clause corresponds a constraint link; see Figure 1 for examples. Constraints are

propagated when the truths of the propositions in all but one literal in a clause become

known: if the literals are all unsatisfied,2 the clause is then used to deduce the truth of the

remaining literal.

1 This differs from such non-monotonic formalisms as Doyle's, in which the belief status of a proposition
is either in or out, marking the proposition respectively as having, or lacking, reason to be believed [Doyle
78].
2A literal is unsatisfied if it requires of a proposition a truth value opposite of the one it has been assigned
by assertion or as the result of deduction.

9

• ' I II - II- - iI

BBN Systems and Technologies Corporation Report No. 6937

McAllester [McAllester 80] notes that constraint propagation is complete for his formulation

of truth maintenance when the database of constraints meets certain restrictions. In

particular, if all the clauses in the database are HORN (all the literals but one are negative) or

NOGOoD (all the literals are negative), constraint propagation is a sound and complete

polynomial time decision procedure for the TMS. In the general case, however, constraint

propagation is incomplete. If arbitrary clauses are allowed in the TMS, the problem is NP-

complete, by a straightforward reduction from SAT.

McAllester additionally notes that his TMS is essentially performing unit clause resolution.

This is a variant of propositional resolution in which any clause of size n a 2 can only be

resolved against n-1 "unit" clauses of size 1. This is of special interest in considering

parallel implementations of this TMS, since it leads to an unfavorable worst case result.

Indeed, unit clause resolution is P complete [Jones & Laaser 7713. Problems in this class

are strongly conjectured not to have a parallel solution that is guaranteed to terminate in less

than polynomial time (see [Reif 85]). Hence, the asymptotic worst-case performance of

any parallel algorithm for McAllester's TMS can not be expected to improve on that of the

best serial solution. In fact, Kasif [Kasif 86] shows that a generalization of TMS constraint

propagation, the relaxed consistent labelling problem [Mackworth 77], is P complete as

well.

Worst-case results such as these do not render vacuous the enterprise of parallel truth

maintenance. Rather, they bring to light the need for parallel TMS strategies that exploit

sources of concurrency that are independent of any inherent TMS sequentiality. This is the

31f a problem x is P complete, then any problem in P is reducible to n by a transformation requiring
logarithmic working space. In [Garey & Johnson 791, this class of problems is also referred to as log-space
complete for P.

10

l.l. I. I .. . m I E i I .

Report No. 6937 BBN Systems and Technologies Corporation

principal focus of this work, and I will return to it after first considering the nature of

parallelism on the Butterfly multiprocessor.

2.3 The Butterfly and Butterfly LISP

The Butterfly, manufactured by BBN, is a MIMD machine configurable with up to 256

processors. Each of the processors may run an independent program (the MI part of MIMD

-- multiple instruction streams) in its own local memory (the MD part -- multiple data).

Particular to this machine is that each processor's memory is made entirely accessible to all

other processors through a network of butterfly switches. This architecture has several

implications to the programmer. First, very general forms of concurrency may be

developed, but not without the scheduling cost of assigning processors to tasks. Second,

since the butterfly switch imposes a memory access delay, allocation strategies for global

variables must compromise between a processor's rapid access to local variables and

delayed access to variables reached through the switch. Finally, since the processors are

independent, the programmer must contend with simultaneous attempts to set variables,

and the many locking considerations that ensue.

Butterfly LISP [Steinberg et al. 86] addresses these programming issues with a number of

parallelism abstractions. As with MULTILISP [Halstead 85] from which Butterfly LISP is

derived, processor scheduling is handled through a global task queue. Tasks are entered in

the queue with the future construct, which schedules the evaluation of a LISP form for

parallel execution. In essence, the expression

(future form)

11

BBN Systems and Technologies Corporation Report No. 6937

invokes a lazy evaluation of form that is dispatched through the queue. This construct is

elegant, but potentially costly, since it requires dispatching the environment in which a

form is evaluated along with the form.

Synchronization is achieved through a host of atomic test-and-set operations and locking

primitives. For the purpose of this work, the synchronization primitives were unified by

implementing atomic extensions to COMMONLISP's generalized variable access functions,

Of particular interest is setf-if-eq?!. The form

(setf-if-eq?! place new old),

which compares the value of the generalized variable place to old, and if the test

succeeds, atomically sets place to new. If the test fails, the variable is left unchanged,

and the setf-if-eq?! returns U ! false. Similarly, atomic-incf ! and atomic-

decf ! respectively increment and decrement a generalized variable.

Finally, in Butterfly LISP, global variables are randomly allocated across all processors.

Although this simple strategy does not allow user optimization of memory-to-processor

allocation, it also minimizes memory contention by avoiding the concentration of variables

on a particular processor's local memory. Empirical studies have demonstrated that this

strategy leads to better performance for many problems than other seemingly more

sophisticated approaches.

2.4 A parallel TMS algorithm

It is fairly clear, at least initially, where the architecture of the Butterfly and the parallelism

constructs of Butterfly LISP might be exploited in a multiprocessing TMS. Since the

machine has completely shared memory, the TMS constraint graph can be distributed across

12

_j

Report No. 6937 BBN Systems and Technologies Corporation

all the processors: in essence this provides a global data structure for the graph, to which

each processor has independent access within the same average time. Concurrency is

introduced to the TMS in the main iteration step of the constraint propagation algorithm. In

this step, the constraints attached to a node (e.g., clauses) are checked for potential

deductions when a truth value is determined for that node (e.g., true or false). The

concurrency is provided by checking these clauses in parallel, applying the parallel

propagation recursively to any node whose truth is determined in the propagation process.

Figure 2: Concurrent Deductions

D D D

C B C B cB

A A A

Assert A, Propagate from A, Propagate from
Constraints: concurrently B and C, yielding

(not A) or B inferring B and C twi support paths
(not A) or C for D, but only
(not B) or D inferring D once
(not C) or D

This simple process can proceed without concern for synchronization, excepting for

problems that arise when two processes attempt to set the truth of a node simultaneously.

This situation can occur when each of several clauses that are being checked concurrently

supports the determination of the same node (see Figure 2). Allowing the node's truth to

be set repeatedly could lead to redundant propagation out of the multiply-deduced node,

since each process that sets the node might try to propagate from it recursively. What is

more, if the multiple clauses disagree as to the truth value that should be assigned to the

13

BBN Systems and Technologies Corporation Report No. 6937

node, they might overwrite the truth setting of the node with conflicting values, leading to

undetected contradictions.

This synchronization of propagation is obtained by atomically testing that the truth of a

node is unknown before setting it. The synchronization thus occurs at the level of the

Butterfly memory bus, which remains locked during the atomic test-and-set to all but one

of the processes competing to set the truth of the node. Figure 3 shows a simplified LISP

algorithm implements this synchronizing propagation.

This algorithm is used as follows. Given a database of nodes and constraints (i.e., non-

unit clauses), a new proposition (i.e., a unit clause) is added to the database by calling .. -

set-truth on its corresponding node. The algorithm then performs truth maintenance

over the database by computing all unit clause resolutions that the database sanctions. The

correctness of the algorithm is readily verified.

Proposition 1: The algorithm in Figure 3 computes exactly those unit clause resolutions

sanctioned by a database of asserted propositions and constraints.

Proof: First note that the algorithm never performs a resolution that isn't sanctioned by the database.
Resolutions are performed in line 7, when set-truth is called to assign the truth of a node. However,

set-truth is only passed such a node if this node is mentioned in a literal returned by deducible-

lit? on line 5, which in turn happens just in case the literal is the only satisfied literal in a clause. Since

all other literals in the clause are unsatisfied, inferring the literal exactly performs a unit clause resolution.

To see that the algorithm does not miss any resolutions, observe that a resolution must occur between a

clause of length n > 1 and one or more unit clauses. However, a unit clause can only be added to the -

database through set-truth, which then checks all non-unit clauses that mention the unit clause in a literal

(by a queued call to propagate, which in turn calls deducible-lit?). Thus, for any non-unit clause

c, when enough unit clauses accumulate in the database to permit the resolution of c, the last such addition

will cause deducible-lit? to sanction the resolution step on c.

14

Report No. 6937 BBN Systems and Technologies Corporation

Figure 3: Simplified Propagation Code
(define-struct node

(truth 'unknown) ; The truth status of a node.
(clauses nil)) ; All clauses that mention this node.

1 (define (set-truth node truth)
2 (when (setf-if-eq?! (truth node) truth 'unknown)

We set the node's truth. Now propagate.
3 (mapc (lambda (clause) (future (propagate clause)))

(clauses node))))

4 (define (propagate clause)
5 (let ((literal (deducible-lit? clause)))
6 (when literal

We found a literal (a node and its desired truth) to deduce.
7 (unless (set-truth (lit-node literal) (lit-truth literal))

Another process set the node. Check for contradictions.
8 (unless (eq? (truth (lit-node literal)) (lit-truth literal))
9 (flag-contradiction clause))))))

10 (define (deducible-lit? clause)
(when (eq? (satisfied-literal-count clause) 1)

; The clause contains exactly one satisfied literal. This
; literal mentions a node that is either unknown, or has truth
value opposite to that which is assigned it in the literal.

(get-satisfied-literal clause)))

Note that the preceding proposition only guarantees the overall correctness of the algorithm

in the absence of undetected contradictions between assertions in the database. The

synchronizations necessary to prevent contradictions from poisoning the database are

guaranteed by proposition 2.

Proposition 2: The algorithm in Figure 3 correctly synchronizes parallel propagation in

that (1) it prevents a node's truth from being set more than once, and (2) it detects any

contradictions explicit in the database.

Proof: (1) The only way for a node's truth to be changed from its initial setting of unknown is through

the set f-if-eq? ! in set-truth. This atomic operation succeeds only when no other process has

either previously set, or is currently setting, the node's truth. Since success is required to propagate the

node's truth through its clauses (with the mapc in set-truth), only the first process that tries to set the

node will spawn propagations.

15

BBN Systems and Technologies Corporation Report No. 6937

(2) Conversely, an explicit contradiction arises in the database only when two clauses independently

constrain a node's truth setting to have opposite values. However, the unless test in line 7 ensures that
only one clause will succeed in propagating a value. An attempt to propagate to the node a second value, as

assigned by a second clause, will fail the test in line 7, and the contradiction handler will then be invoked
(lines 8 and 9).

It should be noted that the contradictions detected in this way must be explicitly present in

the TMS. However, only when the TMS database is restricted to Horn and NoGood

clauses will this be the case. In the general case, the incompleteness of constraint

propagation as a decision procedure will allow some contradictions to go undetected.

Figure 4: Constraint Sequentiality

PVP3
P2

P t Etc Pi I

Etc

Pn-1 Pn-I

(a) inherent (b) "compiled out"

2.5 Defeating the Sequentiality of Truth Maintenance

As noted above, the P-completeness of unit clause resolution guarantees that some truth-

maintenance problems are inherently non-parallelizable, and must be solved sequentially.

Figure 4a shows a TMS constraint graph of this type. In this example, if P1 is asserted, the

entire graph will have to be traversed in sequence before all deductions are completed.

16

Report No. 6937 BBN Systems and Technologies Corporation

In practice constraint sequentiality is not necessarily this pathological. When it has

occurred in the circuit simulations that have served me as examples, the main source of

sequentiality was a coupling of moderate constraint fanout (of order 2 or 3) with a

predominance of constraints that had a low probability of leading to an actual deduction

when checked. The result was short bursts of moderate parallel activity over a background

of uniprocessing.

It is a folk truism, however, that this kind of run-time sequentiality can be eliminated

through compilation. In theory, one can short cut a series of n constraints that are all

satisfied by the same premise set by compiling a new constraint for each of the additional

n(n+J)/2 subsets of the series. The graph in Figure 4a would thus be transformed into that

of Figure 4b. At run time, adding the premises that satisfy any one of the constraints in the

original series would now require O(n) parallel propagation steps to transmit the premises

through the series. However, each propagation step requires a logarithmic parallel time

factor in order to map through the constraints indexed to the node (if the constraint sets are

optimally organized as balanced trees). This in turn translates to O(log n) parallel time to

transmit the premises through the compiled graph for the series, as opposed to 0(n) parallel

time for the original graph.

Note that this doesn't eliminate the inherent sequentiality of the problem, since 0(n) parallel

time or 0(n 2) serial time is required to compile the graph. Additionally, the 0(log n)

parallel run time performance requires M(n2) processors, since each of the compiled series'

n(n+l)/2 constraints may need to be checked at run time.

17

BBN Systems and Technologies Corporation Report No. 6937

2.6 Additional Concurrency Strategies

Although graph compilation can increase the degree of run-time concurrency for inherently

sequential TMS databases, the resulting M(n2) processor requirement is unrealistic for all

but the most massively parallel of multiprocessors. For smaller machines, especially MIMD

ones like the Butterfly, other sources of run-time concurrency must be exploited in order to

maximize processor utilization.

One way to increase the concurrency of the TMS is to assert multiple premises

simultaneously. To do this, one simultaneously labels all the nodes corresponding to the

premises with their respective truth settings, and allows constraint propagation to proceed

in parallel from each of the premises. The result is a kind of pipelining in which separate

streams of constraint propagation occur in parallel with near independence. Even if each

independent assertion would only lead to moderate processor u:ilization, asserting them

together increases the degree of useful parallelism. The limiting factor thus becomes the

degree to which multiple premise assertions need be made at once.

In fact, in this model of truth maintenance, simultaneous premise assertion arise naturally

when switching contexts to explore rival hypotheses. To avoid the large potential overhead

of maintaining many contexts simultaneously [Provan 88], only one global context is

maintained by the TMS at any one time. Switching contexts therefore requires a series of

assertions and retractions, which can be performed concurrently in this TMS.

Retraction is another source of TMS concurrency. Algorithmically, retracting a premise is

analogous to asserting one, with the removal of truth settings replacing their addition. As a

process, retraction shares the same properties as assertion, including worst-case

sequentiality and the opportunity to pipeline several retractions simultaneously. However,

18

Report No. 6937 BBN Systems and Technologies Corporation

retraction may not safely co-occur with assertion. Indeed, consider a circular constraint

chain. If a node is asserted by one process, and then immediately retracted by another, the

two processes could loop around the chain repeatedly (possibly indefinitely), the one

process removing what the other has just added.

Finally, concurrent strategies also exist for constructing the constraint graph. It is possible

to add multiple constraints to the graph at the same time, provided some, by now familiar,

synchronization concerns are addressed. For example, indexing a constraint on a node's

constraint list must be done atomically, to ensure well-formedness of the list if several

constraints are being indexed concurrently.

More significantly, the truth maintenance algorithm of Figure 3 can be extended to allow

construction of the constraint graph to occur simultaneously with constraint propagation.

That is, portions of the constraint graph can be under construction while premise assertion

and deduction are occurring. This is somewhat counter-intuitive, since it can lead to some

processors modifying graph structures at the same time as these structures are being

explored by other processors. The synchronization of these disparate processes is achieved

by explicit1, locking a TMS node at precisely those times when graph construction and

deduction would adversely interact. These locks occur at the software level, and unlike the

atomic memory bus locks that introduce virtually no delay, these software locks may force

processes to go to sleep temporarily, i.e., be rescheduled for subsequent re-evaluation.

Fortunately, the locks, are only in effect for brief periods of time, and don't seem to

involve many processes beyond their initiator.

The algorithmic minutiae of this locking strategy are not of immediate interest here,

however, and have been relegated to the Appendix. What is of interest is the fact that

19

BBN Systems and Technologies Corporation Report No. 6937

allowing assertion, deduction and graph construction to occur in parallel endows the TMS

with a broad heterogeneous concurrency.

2.7 Heterogeneous Concurrency

This heterogeneous concurrency has an unexpected consequence on the way one

approaches truth maintenance. Indeed, it is now possible to view the entire process of

building a model in the TMS as a naturally parallel one. Current (uniprocessor) TMS's have

cast this modeling into explicitly separate phases of problem solving (in which constraints

get added to the graph) and hypothesis testing (in which premises are asserted and then

propagated). On a uniprocessor, this is a natural distinction to draw, since computation

must necessarily be serialized, and may as well be so in a way convenient to the

programmer. On a MIMD multiprocessor, not only is serializing problem-solving and

hypothesis testing unnecessary, but it is to be avoided whenever it reduces the degree to

which concurrency can be exploited. To the extent that a problem supports it, the TMS

programmer should be free to mix problem-solving with truth maintenance.

One way to enable this naturally is through noticers (demons) placed on TMS nodes.

Almost all TMS's provide these kinds of demons to inform the problem solver of a salient

proposition becoming believed or disbelieved as a result of deduction. In a MIMD

environment like that of the Butterfly multiprocessor, these demons can be run concurrently

with the TMS, as can the problem-solving processes the demons in turn spawn. Although

doing so promotes concurrency, it also raises an issue of consistency.

Indeed, the premises that lead to a demon being fired might ultimately be contradicted by

other premises added at the same time. However, since truth maintenance could still be

20

L :
Report No. 6937 BBN Systems and Technologies Corporation

occurring at the time of the demon's invocation, the contradiction may not yet have been

U[detected. Hence the problem solver may not unconditionally assume that the premises that

led to its being invoked are not at risk of being contradicted. The burden is on the problem

solver to determine at some point in the future whether such a contradiction occurred.

How best to handle the concurrent interaction of the TMS and the problem solver is very

much an open question. The current implementation of the system doesn't address this

issue beyond providing a framework in which it can be explored.

2.8 Performance Results

All of the algorithms and strategies described in this paper have been implemented in a

running Butterfly LISP program. This TMS has been put to use in symbolic simulation of

digital circuits, an application in which it has demonstrated significant concurrency. Even

the simulation of simple circuits, such as a 4 bit adder, can lead to the full utilization of the

16 processors on the machine that I have used. This is the good news.

The not-so-good news is that the actual running time of this multiprocessing TMS can

actually be worse than that of a uniprocessor system 4 running on the same problem. The

reason for this disappointing performance is, I think, largely due to the extreme youth of

the underlying LISP system. Indeed, at the time the TMS was first implemented, no

compiler was available for Butterfly LISP, and much of the system code itself was running

interpreted. A compiler has recently been made available, and I am in the process of tuning

the TMS to the new LISP environment, with the expectation that this will lead to more

rewarding performance measurements!

4 A Symbolics 3670, to be precise.

21

BBN Systems and Technologies Corporation Report No. 6937

Additionally, until the TMS can be run compiled, it is hard to evaluate the degree to which

the concurrency it displays represents effective computation. The concurrency would be

uninteresting if it only amounted to, for example, mindless enqueueing and dequeueing of

processes that performed no useful work before being put back to sleep. Ineffectiveness of

this sort does not currently seem to be occurring. However, this conclusion must remain

tentative until the system is tested in a more realistic computational environment.

Along these lines, the future-based task queue appears to be too general for the needs of

the TMS. In fact, all of the parallel mapping operations in the TMS can be recast in terms

that do not require packaging up lexical environments, as is done with future forms.

One way to optimize the TMS would thus be to circumvent the system's task queue in favor

of one without the future overhead. Several optimizations such as this will likely be

necessary before timing statistics can be fairly obtained for this system, and before

comparisons can be accurately drawn to other implementations on other hardware.

2.9 Cross-applicability of These Results

It is enlightening to consider these results in view of how they niight apply to other TMS

models, and to other parallel hardware. De Kleer's ATMS [de Kleer 86], for example,

extends McAllester's RUP with multiple simultaneous contexts and a minimization

operation on premises. This system has found uses, particularly in solving problems in

which all solutions are required; for such problems the ATMS provides efficient sharing of

intermediate results. Although this is still an open issue, it is not immediately apparent how

to implement the sharing and minimization in parallel without requiring costly global

synchronizations. Without these features (but with contexts), a simplified, though less

22

Report No. 6937 BBN Systems and Technologies Corporation

interesting ATMS could readily be made concurrent with the techniques described here.

Additionally, this restricted ATMS could also be run in concert with its problem solver.

It is reasonable to wonder whether the parallel techniques described here can be generalized

to all constraint propagation problems; to some extent they can. As long as the problem's

constraint formalism maintains some analog of deduction (numeric assignment for

example), the concurrent graph building and propagation strategies are applicable. Also, if

the problem supports the propagator/solver architecture used here, the analogous

components may be run concurrently too.

Another open question is whether the sources of parallelism that have emerged in this

MLMD TMS can also be exploited on large-scale SIMD machines such as the Connection

Machine Tm [Hillis 85]. This seems somewhat unpromising, since given the worst-case

sequentiality of constraint propagation, the current implementation achieves much of its

parallelism through the heterogeneity of its concurrent tasks. It isn't clear how this

heterogeneity can be orchestrated on machines whose processors operate solely in locked

synchrony. This isn't to say that SIMD truth maintenance systems are unfeasible. For

example, an intriguing ATMS variant has been implemented on the Connection Machine

[Dixon & de Kleer 88]). Instead of sharing deduction, or computation of any sort,

between contexts, this system places one context on each of the machine's 65,536

processors, and performs a serial truth maintenance problem in each context. 5 What

systems such as this demonstrate is that SIMD truth maintenance systems almost certainly

require a different set of techniques than those I've described here.

5The enormity of this computation demonstrates graphically the actual cost of determining the 2n solutions
to a problem that follow from considering all possible combinations of n Boolean hypotheses. The entire
Connection Machine is taken up in computing the consequences of only 16 hypotheses.

23

BBN Systems and Technologies Corporation Report No. 6937

Indeed, one of the lessons of this work has been that the sources of parallelism inherent in

a problem are often not apparent until one tries to elicit them. Further, the parallel strategies

that one discovers in this way are necessarily optimal for the class of machine at hand.

These hardware-imposed constraints should not, however, be seen as limitations. Only by

exploring the full range of models of concurrency will we come to a full understanding of

the impact of parallelism on theories of intelligence.

References

de Kleer, J. (1986). An Assumption-Based Truth Maintenance System. Artificial
Intelligence 28, pp. 127-162.

Dixon, M. & de Kleer, J., (1988). Massively Parallel Assumption-Based Truth

Maintenance. In Proceedings of AAAI-88.

Doyle, J. (1978). Truth Maintenance Systems for Problem Solving (Al TR 419).

MIT Artificial Intelligence Lab.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. New York: W. H. Freeman and Co.

Halstead, R. H., Jr. (1985). Multilisp: A Language for Concurrent Symbolic

Computation. ACM Trans. on Programming Languages and Systems 7, pp.

501-538.

Hillis, W. D. (1985). The Connection Machine. Cambridge, Ma: The MIT Press.

Jones, N. D. and Laaser, W. T., (1977). Complete Problems for Determi-nistic

Polynomial Time. Theoretical Computer Science 3, pp. 105-117.

Kasif, S. (1986). On the Parallel Complexity of Some Constraint Satisfaction

Problems. In Proceedings of AAAI-86 , pp. 349-353.

24

Report No. 6937 BBN Systems and Technologies Corporation

McAllester, D. A. (1980). An outlook on Truth Maintenance (Al Memo 551). MIT

Artificial Intelligence Lab.

McAllester, D. A., (1984). A Widely Used Truth Maintenance System. Unpublished

technical report, MIT Artificial Intelligence Lab.

Provan, G., (1987). Efficiency Analysis of Multiple-Context TMSs in Scene

Representation. In Proceedings of AAAI-87, pp. 173-177.

Reif, J., (1985). Depth-First Search is Inherently Sequential. Information Processing

Letters 20, pp. 229-234.

Steinberg, S. A., Allen, D., Bagnall, L., Scott, C. (1986). The Butterfly Lisp System.

In Proceedings of AAAI-86, pp. 730-734.

Waltz D. (1975). Understanding Line Drawings of Scenes with Shadows. In
Winston, P. H., editor, The Psychology of Computer Vision. New York:

McGraw-Hill, pp. 19-92.

Zabih, R., McAllester, D. A., and Chapman, D., (1987). Non-Deterministic Lisp with

Dependency-Directed Backtracking. In Proceedings of AAAI-87, pp. 59-64.

n

II
Butterfly rm is a trademark of Bolt Beranek and Newman, Inc.
Connection Machine r m is a trademark of Thinking Machines Corporation.

25I ._

BBN Systems and Technologies Corporation Report No. 6937

Appendix: Heterogeneous Propagation Algorithm

For the truly inquisitive, this appendix contains a barely simplified version of the fully

heterogeneous truth maintenance algorithm. This algorithm allows for simultaneous

constraint propagation and constraint definition (graph construction). The key to enabling

these two disparate processes to co-occur lies in the proper synchronization of two specific

steps: (1) the setting of the truth of a TMS node, and (2) the indexing of a constraint to a

node. This synchronization is achieved by explicitly locking a node whose truth is

unknown before attempting either of these steps. The node remains locked just long

enough for the step to take place.

For the truth-setting step, shown below in Figure 5, the locking amounts to setting the truth

of the node to ' locked, saving in a temporary register the clauses currently indexed to the

node, and resetting the truth to the originally desired value (lines 1', 2', and 3' in the

Figure). The clauses saved in the temporary register are exactly those that "think" the node

has truth unknown.6 After the node's truth is reset in line 3', these saved clauses must be

propagated. If the node were not locked in this way, a clause initialized when the node was

still unknown might possibly be indexed to the node between the time the node's truth was

set and the time the node's clauses were consequently inspected for propagation (i.e.,

between lines 2 and 3 of the algorithm given earlier in Figure 3). This furtive clause would

then have its satisfied-lit-count slot set to a value inconsistent with the state of

the TMS.

6Indeed, in their satisfied-lit-count slot, clauses cache a count of their satisfied literals. If a node
has been assigned the truth specified by a literal, or remains unknown, then the literal is considered
satisfied.

26

L
Report No. 6937 BBN Systems and Technologies Corporation

The code for the clause indexing step, shown below in Figure 6, capitalizes on the

temporary locking provided by the truth-setting step. When index-clause is called to

add a clause to the graph, it tries to lock all the currently unknown nodes mentioned by the

clause (the mapc started on line 6' in the Figure). If in this process a node becomes locked

*S by set-truth (or by another index-clause process), index-clause aborts and

requeues itself for future evaluation (line 10'). If, however, the unknown nodes are

successfully locked (if of line 7'), the clause can have its sat isfied-lit-count slot

properly initialized (line 9'), and can be indexed to the requisite nodes (line 8'). -*

Additionally, since the unknown nodes are temporarily locked during this time, no

set-truth process can surreptitiously set the truths of the nodes and invalidate the
clause's s at i s f i ed- 1 it- count.

One final wrinkle: if a set-truth process attempts to set a node temporarily locked by an

I index--clause or another set-truth process, the first set-truth process may have to be put to

sleep. This is handled in lines 4' and 5' of Figure 5.

27I_

BBN Systems and Technologies Corporation Report No. 6937

Figure 5: Heterogeneous Truth-Setting Code
(define-struct node

(truth 'unknown) ; The truth status of a node.
(clauses nil)) ; All clauses that mention this node.

(define-struct clause
(literals nil) ; The literals that make up the clause,

; sorted by a canonical order on nodes.
(satisfied-lit-count 0)) ; How many of the literals are satisfied?

(define (set-truth node truth)
1, (if (setf-if-eq?! (truth node) 'locked 'unknown)

The node is now locked: no clauses can be added.
21 (let ((clauses (clauses node))

; Temporarily save the clauses that think this node is unknown. a
3' (setf-if-eq?! (truth node) truth)

; We set the node's truth and unlocked the node. Can add
; clauses safely now. As before, propagate
(mapc (lambda (clause) (future (propagate clause)))

clauses))
;; If we failed the setf-if-rq?!, it could be because the node was
;; locked. If it was, or is still unknown, try again.--

4' (when (locked-or-unknown? (truth node))
5' (future (set-truth node truth)))))

(define (propagate clause)
(atomic-decf! (satisfied-lit-count clause))
(when (eq? (satisfied-lit-count clause) 1) J

(let ((literal (get-satisfied-literal clause)))
; We found a literal (a node and its desired truth) to deduce.
(unless (set-truth (lit-node literal) (lit-truth literal))
; Another process set the node. Check for contradictions.
(unless (eq? (truth (lit-node literal)) (lit-truth literal))

(flag-contradiction clause))))))

(define (get-satisfied-literal clause)
Extracts the one satisfied literal in this clause.

J

28

Report No. 6937 BBN Systems and Technologies Corporation

U

Figure 6: Heterogeneous Constraint-Indexing Code
(define (satisfied-lit? literal)

The node in the literal has the truth required by the literal.
(or (eq? truth (lit-node literal)) 'unknown)

(eq? (truth (lit-node literal)) (list-truth literal))))

(define (index-clause clause)
; Indexes a clause in the constraint graph.
(let ((succesful-lock? U!true)

(locked-node nil)
(sat-count 0))

6' (mapc (lambda (literal)
; Map over unknown nodes of clause, and try to lock them.

r (let ((node (lit-node, literal)))
(when (eq? (truth node) 'unknown)

(if (setf-if-eq?! (truth node) 'locked 'unknown)
(push! node locked-nodes)
(setq! succesful-lock? #!false)))))

(literals clause))
7' (if succesful-lock?

(sequence
; Locked all unknown nodes in clause. Now, index the clause.

8' (mapc (lambda (literal)
(atomic-push! clause (clauses (lit-node literal)))
(when (satisfied-lit? literal) (incf! sat-count)))

(literals clause))
; Initialize the clause, and unlock the nodes.

* 9' (setf! (satisfied-lit-count clause) sat-count)
(mapc (lambda (node) (setf! (truth node) 'unknown))

locked-nodes)
Propagate the clause, if need be.

(future (propagate clause)))
(sequence

; Didn't succeed in locking the necesary nodes. Go to sleep
; and try later. But first restore locked nodes.
(mapc (lambda (node) (setf! (truth node) 'unknown))

locked-nodes)
10' (future (index-clause clause))))))

29

BBN Systems and Technologies Corporation Report No. 6937

a

30

L
Report No. 6937 BBN Systems and Technologies Corporation

3. Sentential Semantics for Propositional Attitudes

Andrew Haas, BBN Systems and Technologies Corporation

3.1 The Notion of a Thought Language

The sentential theory of propositional attitudes claims that propositions are sentences of aL-:

thought language. It has an obvious appeal to AI workers, since their programs often

contain sentences of an artificial language, which are supposed to represent the program's

beliefs. These sentences can be true or false, and an agent can make inferences from them,

so they have two essential properties of beliefs. It is tempting to conclude that they are the

program's beliefs, and that human beliefs are also sentences of a thought language. If we

extend this to all propositional attitudes, we have a sentential theory of propositional

attitudes. Such a theory has an advantage over a possible worlds theory because it does not

imply deductive closure. Indeed, it does not imply anything about what agents will deduce

from their beliefs. It simply leaves this question open.

Montague used the possible worlds theory to construct a semantics for a fragment of

English, including propositional attitudes (Montague 1970). In this fragment he addressed

the key problem of quantifiers that are outside the scope of a propositional attitude, but

which bind variables inside that scope. This phenomenon is briefly known as "quantifying

in". An example is "There is someone that Ralph believes to be a spy". Konolige (1986)

treated this problem within a sentential theory, but he assumed that each object in the

31

BBN Systems and Technologies Corporation Report No. 6937

domain of discourse has a unique standard designator in the thought language. As Moore

(1988) observed, this is very implausible. This paper will present a semantics for a

fragment of English based on a sentential theory. This fragment includes quantifying in,

but it does not require unique standard designators.

Moore (op. cit.) states that such fragments "invariably become very complicated, and seem

to require a treatment of quantification into attitude reports that is quite different from the

treatment of other types of quantification" (p. 8). We leave it to the reader to judge

whether our fragment is too complicated. It is certainly true that we need special

mechanisms to handle quantification into the scope of attitudes, but every theory on the

market is forced to admit that attitude reports have unique properties. The situation

semanticists claim that they have a unique pragmatics, while Cresswell says that they have

a unique kind of ambiguity. The real question is which kind of uniqueness best explains

the facts.

As Al researchers, we seek to explain facts about ordinary human behavior. This involves

analyzing an ordinary person's tacit understanding of propositional attitudes, and turning

that analysis into a program. This common-sense understanding is probably inadequate for

psychology and philosophy - just as the common sense view of space and time is

inadequate for physics (see Churchland, 1979). Thus the sentential theory may be false,

but perfectly adequate for describing the inferences about belief and knowledge that people

make in daily life. An argument against this theory is relevant to the present paper only if it

shows that the theory cannot reproduce common-sense inferences about attitudes.

Here is an example of an argument against the sentential theory that is plausible, but

irrelevant to our goals. Moore (op. cit., p. 8) argues that dogs have beliefs, but they J

32

Report No. 6937 BBN Systems and Technologies Corporation

cannot have a thought language like human thought language, so beliefs are not sentences

of thought language. We reply that people try to explain the actions of dogs by assuming

that they use a very limited subset of human thought language. Quite likely this is wrong -

which explains why we don't understand the actions of dogs nearly as well as the actions

of people. Finding a good theory about the actions of dogs is an important problem in

psychology. It is irrelevant to this paper - just as quantum mechanics is irrelevant to

Hayes's program of naive physics.

To make this distinction clearer, we cite an argument against the sentential theory that is

relevant to our concerns. It comes from Levesque (1984). Consider the following

inference:

Mary said that Bill is a fool and Tom is an idiot.

Sue said that Tom is an idiot and Bill is a fool.

Sue said the same thing that Mary said.

This is a valid inference. To put it in AI terms, a program that accepts the premisses and

rejects the conclusion would fail the Turing test. Yet a standard version of the sentential

theory would represent the inference as follows:

say(mary, "fool(bill) A idiot(tom)")

say(sue, "idiot(tom) A fool(bill)")

(3 x say(sue, x) A say(mary, x))

33

BBN Systems and Technologies Corporation Report No. 6937

This inference is invalid, because the sentences "fool(bill) A idiot(tom)" and "idiot(tom) A

fool(bill)" are not identical. The sentential theory is making overly fine distinctions - it

claims that two sentences express different propositions when the difference is merely in

the word order.

Konolige (1986) offered a simple correction to the sentential theory that solves this

problem. Suppose that sentences of thought language are ordered, labeled trees - that is,

the children of each node are totally ordered. Then (P A Q) and (Q A P) are two different

trees. But let us suppose instead that some nodes in our trees have an unordered set of

children. In particular, if a node bears the label A or v its children are unordered, while if it

bears the label -+ its children are ordered. If this is true, then (P A Q) and (Q A P) are two

different notations for one tree, and the inference cited above becomes valid. We will not

incorporate this idea into our fragment, since we wish to concentrate on the problem of

quantifying in. Still the fragment could easily be extended to allow operators with

unordered sets of arguments. Thus we reject the goal of basing a semantics for English

on a true theory about propositional attitudes. However, we must replace this requirement

with another requirement peculiar to Al. Our ultimate goal is to build a robot that can use

English to talk about both human propositional attitudes and its own propositional attitudes.

The most obvious way to do this is to give the robot one theory of propositional attitudes,

which it can apply to itself and to human beings as well. Therefore we insist that it must be

possible to build a robot which exemplifies our theory about thought language. We are not

allowed to make assumptions that are clearly false for any feasible robot - for instance, the

assumption that the agent knows every logical consequence of its knowledge.

We imagine that our agents are robots guided by AT programs of a familiar kind. The

agents think by manipulating sentences of a logical language, in the familiar fashion. These

34

Report No. 6937 BBN Systems and Technologies Corporation

sentences are labeled trees, and the labels are atomic symbols. As always in computer

* science, a single mathematical object can have different representations in different

programs. In a typical program, atoms of LISP might represent atomic symbols of thought

language. However, we do not identify LISP atoms with symbols of thought language.

Different robots can use different LISP atoms to represent the same symbol of thought

language. It is up to us to stipulate that the atom C used by robot X and the atom D used

by robot Y represent the same thought-language symbol. For example, if robot X uses

atom C to represent the concept of a dog, and Y uses D to represent the same concept, we

may stipulate that C and D are both representations for the same abstract symbol.

We assume that each agent has sensors, which continuously create new beliefs about the

agent's surroundings. Each agent has effectors, which accept descriptions of actions in

thought language and attempt to execute those actions. Agents can form new beliefs by

deduction and by introspection. A sentential theory gives us a great deal of freedom in 7

* describing what inferences an agent will make given certain beliefs and goals. Haas (1986)

offers some proposals about these questions, while Konolige (1986) offers a different

approach. For present purposes it is enough to describe the effects and preconditions of

deduction and introspection, without specifying which deductions or introspections the

agent will perform.

Deduction is straightforward - it creates new beliefs which follow from old ones according

to certain proof rules. Introspection is more difficult. Suppose an agent learns by

introspection that he believes the sentence "white(snow)". Then he has a new belief which

asserts that he believes "white(snow)". This belief must contain some name for the agent

himself - but what name? To answer this question we assign each agent a special name in

35

BBN Systems and Technologies Corporation Report No. 6937

thought language called his selfname. Suppose John's selfname is "Mel". Then if John

learns by introspection that he believes "white(snow)", the new belief is

believe(Me 1,"white(snow)")

ca

If there is a table in front of John, his sensors will produce the input sentence

(3 x table(x) A in-front(x,Me 1))

If he wants to achieve a goal sentence G, he tries to find a plan that he can execute in order

to make G true. That is, he tries to prove a sentence of the form

execute(Me1, plan1) -- G

If he succeeds in proving this theorem with plan 1 = P, he will execute the plan P.

The constant Mel is important because the sensors, the introspection mechanism, and the -

planning mechanism all give that constant special treatment. Notice that if the agent in

question is a robot, we can make these three statements true by straightforward

programming. For example, the introspection program will accept a sentence p and try to

decide if it is among the program's beliefs. If it is, the program will create a new belief:

believe(Mel,"p")

36

_I

Report No. 6937 BBN Systems and Technologies Corporation

The selfname will play an important role in our semantics, and its unique properties are

procedural. This means that we do not have a purely model-theoretic semantics for natural

language - we incorporate procedural ideas.

3.2 Vivid Designators

De re belief reports are a key problem in the semantics of propositional attitudes. A

pleasant example comes from a text on ancient history: "Hellenistic scholars believed that

Troy fell in 1184 B.C." The Hellenistic period ended before Jesus Christ was born, so it is

clear that these scholars did not believe Troy fell 1184 years before the birth of Christ.

They referred to the same year by a different description - in fact they counted from the first

Olympiad, in 776 B.C. of our calendar. Thus the noun phrase "1184 B.C." denotes the

year that Hellenistic scholars believed Troy fell in, but it gives us no clue about how they

described that year.

This creates a particular difficulty for the sentential theory. If beliefs are sentences, then a

belief about the year 1184 B.C. must contain some expression of thought language that

denotes the year 1184 B.C. So which expression? One can imagine a variety of them, but

the belief report by itself gives no clue about which one was in the minds of the Hellenistic

scholars. This is not a difficulty for the possible worlds theorists, since they analyze

beliefs without any appeal to mental descriptions.

One possibility is that the sentence simply asserts that the Hellenistic scholars had some

mental description X of the year 1184 B.C., and they thought Troy fell in the year X. This

seems too weak, however. Suppose that Agamemnon was murdered in 1184 B.C., and

the scholars believed that Troy fell in the same year Agamemnon was murdered. Suppose

further that they agreed this year was 400 years before the first Olympiad - that is, the year

37

BBN Systems and Technologies Corporation Report No. 6937

1176 B.C. of our calendar. If these are the facts, then they believed two sentences of

thought language that looked something like this:

fell(troy,(t y year(y) A murdered(agamemnon,y)))

fell(troy,(t y year(y) A before(y,f'rst-olympiad,400)))

Consider the second argument of the predicate "fell" in the first sentence. It is indeed a

description of the year 1184 B.C., so the scholars believed Troy fell in year X, where X

denotes 1184 B.C. Still nobody would say that if the scholars believed this sentence, they

therefore believed that Troy fell in 1184 B.C. The thought language description

(t y year(y) & murdered(agamemnon,y)))

is too weak to support a de re belief report. We would say instead that if they believed the

second sentence, they believed Troy fell in 1176 B.C. The thought language description

(i y year(y) & before(y,first-olympiad,400)))

is strong enough to support a de re belief report.

Kaplan (1969) described these problems, and he offered a solution. He distinguished a

class of terms called vivid designators - those that support a de re belief report. Then the

example sentence will mean that the Hellenistic scholars believed that Troy fell in the year

X, where X is some vivid designator. Kaplan's vivid designators were Fregean concepts,

while ours are closed terms of thought language. This thought language is a theoretical

entity, and we assign it the properties we need. In particular, we are free to add new kinds

38

Report No. 6937 BBN Systems and Technologies Corporation

of vivid designators to the thought language in order to create the de re readings we need.

These vivid designators might not have any translations into English. For example, when

we perceive an object we create a vivid designator for that object, but that vivid designator

has no obvious English translation.

The notion of a vivid designator is also relevant to wh-questions. When I ask you "Where

is XT', I am requesting a response that will help me to find a vivid designator for the

location of X. Yet the question seems to be more specific than this. In some examples

there is an intuition that the speaker has a particular kind of vivid designator in mind.

Suppose you and John are staying in a hotel in a strange city and you go out for a walk.

After a while John asks "Do you know where we are?" You realize that you're completely

lost, and reply "No". Seeing a telephone you decide to call Mary and ask for directions.

She answers and says "Do you know where John is? I have to talk to him right away".

You answer "Yes, he's right here", and hand him the phone. When John asked if you

knew where he was you said no; a minute later you said yes. Presumably you understood

that the answer "here", although it allows John to find a vivid designator for his location, is

not helpful because he already has that vivid designator. In examples like this the speaker

wants a particular kind of vivid designator, and he expects the hearer to understand which

kind. To capture this intuition we postulate an ambiguity in sentences that involve

quantifying in. If an English sentence says that John has a belief about an object x, its

logical translation will indicate what kind of vivid designator of x appears in John's belief.

That means that there are as many translations as there are kinds of vivid designators. This

will not necessarily create a computational problem, because a program may not have to

enumerate the possibilities in order to choose the right one.

39

BBN Systems and Technologies Corporation Report No. 6937

Unfortunately this paper will say little about ways to discover from context what kind of

vivid designator a speaker has in mind. To study this problem one must choose a domain

and describe it in detail - including the knowledge preconditions of various actions. This

paper presents a formal semantics for a fragment of English, which generates the set of

logical translations that the hearer must choose from.

3.3 The Thought Language of our Fragment

Our semantics will provide a translation from English sentences to sentences of thought

language. This thought language is a first-order logic with minor extensions. In our

previous discussion we said that sentences of thought language are labeled trees. In our

fragment we will take a slightly different tack, regarding logical expressions as lists. The

reason for our choice is that we are going to use pure Prolog as a notation for our syntax

and semantics, and if expressions are lists we can take advantage of Prolog's convenient

notation for lists. In this notation we write [a, b, ci instead of (cons 'a (cons 'b (cons 'c

nil))), and we write [a I X] instead of (cons 'a x) (remember that Prolog variables begin

with capital letters). When we write expressions of thought language we will take a slight

liberty with Prolog's notation by omitting the commas between elements of a list.

The quantifiers of our language are more complicated than in a standard first-order logic.

This is because we analyze noun phrases as complex quantifiers, as Montague did. In

order to make translation as easy as possible, we include complex quantifiers in our logical

language. Of course there is a price for this: in order to apply standard theorem-proving

methods, we must replace the complex quantifiers with combinations of quantifiers and

connectives. This, however, is easy to do.

40

Report No. 6937 BBN Systems and Technologies Corporation

We will therefore translate "John saw a cat and a dog" as

[[[3 x [cat x]] A [3 x [dog x]] [see john x]]]

The expression

k [[3 x [cat x]] A [3 x [dog x]]

is a complex quantifier. It applies to a wff, say [p x], and returns true iff there is a value

for x that makes [cat x] and [p x] true, and also a value for x that makes [dog x] and [p x]

true.

A model consists of a set D called the domain of discourse and a function f that maps

constants to elements of D and n-ary predicate letters to functions from Dn into the set

{T,F}. The language contains no function letters. Let M be a model with domain D. Let

den(t,M) be the denotation of a symbol or expression t in M. If e is an environment and v a

variable, let e(v) be the value that e assigns to v. If d e D, let e[v := d] be the environment

like e except that it assigns d to v. Obviously e[v := d](v) = d.

Variables are the letters x,y,z, and w, possibly with subscripts. We write <tl...tn> for the

n-tuple of tl-...tn. The following definitions should need no explanation:

Every variable v is a term, and den(v,e,M) = e(v).

Every constant c is a term, den(c,e,M) = f(c).

41

BBN Systems and Technologies Corporation Report No. 6937

If p is a predicate letter of n arguments and tl...tn are terms, then [p tl...tn] is a wff.

den([p ti...tn],e,M) is T if <den(tl,eM)...den(tn,e,M)> e f(p), otherwise F.

If p and r are wffs [A p r] is a wff and den([A p r],e,M) = T if den(p,e,M) = T and

den(p,eM) = T, otherwise F.

If p and r are wffs [v p r] is a wff and den([v p r],e,M) = T if den(p,e,M) = T or

den(p,e,M) = T, otherwise F.

The syntax of complex quantifiers is as follows. If v is a variable and p and r are wffs, then

x p r]

[V x p r]

[3! x p r]

[-3 xpr]

are quantifiers. If r and s are quantifiers, then

[r A s]

[r v s]

are quantifiers. Finally, if q is a quantifier and p a wff, [q p] is a wff.

In standard first-order logic, there is no need to. assign a denotation to the symbol 3 - it

simply triggers a rule that assigns denotations to wffs of the form (3 x p). In the same

42

Report No. 6937 BBN Systems and Technologies Corporation

way, the complex quantifiers have no denotations of their own. The semantics of

quantified wffs is as follows:

den([[3 x p],r],e,M) = T if for some d e D, den(p,e[x := d],M) = T and den(r,e[x

d],M)= T, otherwise F.

den([[3! x p],r],e,M) = T if for exactly one d e D, den(p,e[x := d],M) = T and den(r,e[x

d],M)= T, otherwise F.

den([[-3 x p],r],e,M) = T if for no d e D, den(p,e[x := d],M) = T and den(r,e[x

d],M)= T, otherwise F.

den([[V x p],r],e,M) = T if for all d e D, den(p,e[x := d],M) = F or den(r,e[x := dl,M)=

T, otherwise F.

pt These definitions are minor variants of the standard definitions. The definitions for

conjunctive and disjunctive quantifiers are more novel:

den([[ql A q2] r],e,M) T if den([ql r],e,M) = T and den([q2 r],e,M) = T, otherwise F.

den([[ql v q2] r],e,M) = T if den([ql r],e,M) = T or den([q2 r],e,M) = T, otherwise F.

Notice that [ql r] is not a sub-expression of [[ql A q2] r]. Therefore the truth value of [[ql

A q21 r] is not defined in terms of the truth values of its sub-expressions, as in the standard

treatment of first-order logic. However the recursive definition is clearly correct, because

43

BBN Systems and Technologies Corporation Report No. 6937

the number of symbols in the expressions decreases at each recursive step. The above

definitions obviously imply that [[ql A q2] r] is true iff [[ql r] A [q2 r]] is true, and [[ql v

q2] r] is true iff [[ql r] v [q2 r] is true. Thus it is easy to eliminate the conjunctive and

disjunctive quantifiers after they have served their purpose of simplifying the translation

rules. "

The definition of free and bound variables must be extended to allow for the complex

quantifiers. The quantifier [ql A q2] binds a variable v iff ql and q2 both bind v,and

similarly for [ql v q2]. If q is a quantifier and r a wff, the free variables of [q r] are all free

variables of r except those bound by q. The reader can check that with this definition the

denotation of a wff depends only on its free variables, as in standard first-order logic.

We need to extend our logic in another direction in order to represent propositional attitudes

and quantifying in. Since propositions are wffs of thought language, the domain D must

include every wff of the language. To include the expressions of the language in the

domain of discourse is certainly unusual, but it is perfectly consistent with the standard

definitions of first-order logic, which place no restrictions on the entities that may occur in

the domain. It creates no self-reference paradoxes - these arise only when we try to add the

predicate "true" to the language. No first-order language can contain its own Tarskian truth

predicate, but it is quite pbr'sible for the language to contain a truth predicate that

approximates the Tarskian truth predicate, disagreeing only in the paradoxical cases. Perlis

(1985) has shown how this is done, and proved that the resulting systems are consistent.

Haas (1986) also discusses the matter.

The language includes a set K of distinguished constants which denote the various kinds of

vivid designators - numerals, selfnames, and whatever other kinds of vivid designators we --

44

Report No. 6937 BBN Systems and Technologies Corporation

may need. An object may or may not have a vivid designator of a particular kind - for

example, only numbers have arabic numerals, and only agents have selfnames. No object

can have more than one vivid designator of a particular kind - each agent has just one

selfname, and each number has just one arabic numeral. All vivid designators are closedU

terms of the thought language.

There is also a a special predicate "has-name". [has-name x n k] means that n is a name for

object x and n belongs to the kind k of vivid designators. For example, if "23" denotes the

arabic numeral for the number 23, we write

L

[has-name 23 "23" arabic]

If "Mel" denotes the selfname of John, we write

[has-name John "Mel" selfnames]

U

To put if formally: if k is the denotation of a constant in K, then for all x E D there is at

most one n e D such that the triple <x n k> e f(has-name), and this n is a closed term of

the language.

Finally, there is a special quotation operator q. This operator is not a function letter - it is a

real extension of first-order syntax. If vl...vn are variables, kl...kn are constants in K,

and p is any wff of our language, then [q [v 1.. .Vn] [kl ...kn] p] is a term. It denotes a wff

formed by replacing the variables v 1.. .Vn in p with vivid designators for the entities they

denote. The constants kl ...kn serve to indicate what kinds of vivid designators are

intended.

45

BBN Systems and Technologies Corporation Report No. 6937

Suppose John knows what Mary's phone number is. This means that he knows that

Mary's phone number is n, where n is an arabic numeral. We can indicate this in our

notation by writing

[3 n [number n] [know John [q [n] [arabic] [has-phone-number Mary n]]]]

The symbol "know" is an ordinary predicate letter, not a special operator. Its second

argument is a term that denotes the sentence John knows. Suppose Mary's phone number

is 5766, that is n = 5766. Then the sentence John knows is formed by replacing the

variable n in the wff

[has-phone-number mary n]

with a vivid designator of kind arabic - that is, the arabic numeral "5766". The result looks

like this:

[has-phone-number Mary 5766]

This is the sentence that John knows.

The denotation of [q [vl...vn] [kl...knl r] is a wff formed by substituting closed terms for

free occurrences of Vl...Vn in r. If v ...vn includes all the free variables of r, the

denotation will be a sentence, not a wff with free variables. Propositions in our theory are

always sentences of thought language. Therefore if the term [q [Vl...VnI [kl .. .kn] r]

46

AI

Report No. 6937 BBN Systems and Technologies Corporation

occurs in the translation of a sentence, vl...vn should include all the free variables of r.

The fragment will ensure that this is always true.

Let E be an environment such that E(v) is a person p. What is the denotation in E of the

term [q [v arabic] [wise v]]? It should be formed by replacing v in [wise v] with a vivid

designator for p of kind arabic - but there is no such designator. Such expressions may not

produce a practical problem for programs. It is common knowledge that people do not

have vivid designators of kind arabic, so is easy for a program to recognize that if v

denotes a man then [q [v arabic] [wise v]] should not occur in the translation of any

sentence. Nevertheless expressions like these are well-formed, and the semantics must do

something with them. The easiest thing is to choose an arbitrary term to serve as a dummy

name. Therefore choose a term B. If d e D and k is the denotation of a constant in K,

define n(d,k) as follows. If there is a t such that [has-name d t k], then t is unique and

n(d,k) = t. Otherwise n(d,k) = B. Thus B is a dummy name that allows us to assign a

denotation to [q [v] [k] r] even when v denotes an entity that has no vivid designator of

kind k.

We write s[tl...tn/vl...vn] for the result of simultaneously substituting tl...tn for vl...vn

in s. Then den([q [v1 ... vn] [kl ... kn I r],e,M) is

r[n(den(vl,e,M),den(kl,e,M))...n(den(vn,e,M),den(kn,e,M))/ V1 ...Vn]. The free

variables of [q [vl...vn] [kl...kn] are vl...vn. Obviously the denotation of [q [vl...vn]

[k 1.. .kn] depends only on the denotations of its free variables.

This definition of the q operator of course implies that substitution of equals will fail inside

the scope of q. Suppose

47

BBN Systems and Technologies Corporation Report No. 6937

clark-kent = superman

[believe Lois [q 0 [] [born-on superman krypton]]]

The second sentence says that Lois believes the sentence [born-on superman krypton] (in "

this case, the variable list is empty). These sentences do not imply

[believe Lois [q [1 [1 [born-on clark-kent krypton]]]

This example raises the question of proof methods for our logic. There is no proof method

at present, though it may be possible to construct one by generalizing the ideas of Konolige

(1986). Fortunately we do not need a general proof method in order to do semantics. We

only need to establish that certain patterns of argument are valid or invalid.

3.4 The Fragment

3.4.1 Quantification

The fragment is a definite clause grammar (Pereira and Warren, 1980). DCG allows calls

to Prolog, and Prolog allows various extra-logical operations. However, the fragment uses

only pure Prolog - that is, definite clauses without extra-logical operations. Pereira and

Warren write

s(SO,S) :- np(P,N,S0,S 1) vp(P,N,S1,S)

48

.,, ,-

Report No. 6937 BBN Systems and Technologies Corporation

to indicate that for all P and N, a sentence extends from SO to S if a noun phrase with

person P and number N extends from SO to S1 and a verb phrase with person P and

number N extends from S 1 to S. In the language of context free grammars, a sentence

derives a NP with person P and number N followed by a VP with person P and number N.

The notation

s :! np(P,N) vp(P,N)

is an abbreviation for the definite clause

s(SO,S) :- np(P,N,S0,S1) vp(P,N,S1,S)

The fragment uses Cooper's device of quantifier storage (Cooper 1982). The major

categories SNP and VP each have two semantic features: the translation, which is a wff or

term, and the quantifier store, which is a set of quantifiers that bind the variables in the

translation. For a NP the translation is a variable v, and the quantifier store consists of a

single quantifier which binds v. For example,

np([V x [man x]],x) [every man]

The quantifier for a NP may be a conjunctive or disjunctive quantifier, containing

embedded quantifiers. In this case the embedded quantifiers must all bind the same

variable. Thus we have

np([[V x [man x]1 A [V x [woman x]]],x) : [every man and every woman]

49

. W ~ -W . .. ~ P - I I I

BBN Systems and Technologies Corporation Report No. 6937

but not

np([[V x [man x]] A [V y [woman y]]],x) :1 [every man and every woman]

This translation is impossible because the two embedded quantifiers bind different

variables.

For a VP the translation is a wff, and the quantifiers in the store bind all the free variables

of the wff except for one: the variable that is the translation of the subject. This variable is

supplied as an extra semantic argument of the VP - let us say the first argument. Thus we

have

vp(y,[[V x [woman x]]],[loves y x]) Al [loves every woman]

For an S the translation is a wff and the quantifiers in the store bind all free variables of the

wff. Thus we have

S([[3 y [man y]],[V x [woman x]]],[loves y x]) = [some man loves every

woman]

The rule that creates sentences can take quantifiers out of the store and place them at the

front of the translation of the sentence. This process of applying quantifiers is non-

deterministic, and this non-determinism will create the desired scope ambiguities. To make

this more explicit, we present the Prolog predicate that takes a list of quantifiers and applies

them to a wff. apply(L,Wffl,Wff2) means that applying the quantifiers in list L to Wff I

can produce Wff2. It is defined by the following Horn clauses:

50

L
Report No. 6937 BBN Systems and Technologies Corporation

apply([],Wff1,Wffl):--

apply(L,Wffl,[Q Wff2]):- pick(Q,L,M) apply(MWffl,Wff2)

pick(XL,M) means that X is an element of list L and M is the list remaining after X is

removed from L. It is easily defined:

pick(X,[X I L],L)

pick(Y,[XIL],[XIM]):- pick(YLM)

If we are interpreting the sentence "Some man loves every woman", we will find that there

are two solutions to the goal

apply([[3 x [man x]],[V y [woman yJ]],[love x yj,Wff)

One is

Wff [[3 x [man x]] [[V y [woman y]] [love x y]]

The other is

Wff [[V y [woman y]J [[3 x [man x]] [love x y]]]

51

i .

BBN Systems and Technologies Corporation Report No. 6937

This mechanism certainly allows us to get wide-scope readings and create ambiguities. The

danger is that it may create too many ambiguities. For example, the sentence "Every man

loves the woman" has only one reading, with "the" outscoping "every". The predicates

above would allow another reading, in which "every" has the wider scope. This occurs

because the predicate "pick" can remove the quantifier V from the quantifier store and apply

it before applying the quantifier 3!. We could prevent this by re-defining the predicate

"pick", so that it always applies the quantifier 3! before other quantifiers. People prefer

readings in which the order of scoping is the same as the order of quantifiers in the original

sentence. In the fragment quantifiers always appear in the store in the order in which they

appear in the sentence, so this preference is easy to represent. Quantifier scope is a difficult

problem, and this paper will not offer a solution - we merely indicate where in our system

the solution could fit.

Pereira and Shieber (1987) also present a DCG using quantifier storage. The quantifiers in

their fragment are properties of predicates, as in Montague, rather than complex first-order

quantifiers as in the present fragment. Their fragment builds an intermediate representation

called a quantifier tree, which sums up a set of possible readings, rather than generating the

various readings directly.

A key problem in translating English to logic is making sure that different quantifiers bind

different variables. The translation of "Some man loves every woman" can be

[[3 x [man xj] [[V y [woman y]] [loves x y]]]

but it cannot be

52

Report No. 6937 BBN Systems and Technologies Corporation

[[3 x [man x] [[V x [woman x]] [loves x x]]]

Pereira and Warren (1980) solved this problem by using Prolog variables to represent

variables of the object language. Thus their translation for "Some man loves every

woman" is

exists(Y): (man(Y) & all(X): (woman(X) => loves(Y,X)))

where X and Y are Prolog variables. This works, but it violates the declarative semantics

of Prolog. According to that semantics every variable is universally quantified. Thus

suppose S(Wff1,P1,P2) means that the text from point P1 to point P2 is a sentence whose

translation is Wffl. If Prolog proves the clause

S(exists(Y) : (man(Y) & all(X) : (woman(X) => loves(Y,X))),P1,P2)

this means that for all values of X and Y the expression

exists(Y): (man(Y) & all(X): (woman(X) => loves(Y,X)))

is a possible translation for the string from P1 to P2. This means that if v is a variable of

the object language, then

exists(v) : (man(v) & all(v) : (woman(v) => loves(v,v)))

53

BBN Systems and Technologies Corporation Report No. 6937

is a possible translation - which is clearly false. Thus according to the declarative

interpretation, Pereira and Warren's fragment does not express the requirement that

different quantifiers bind different variables.

This does not mean that the fragment is wrong - in fact it is provably correct, according to

the procedural interpretation that Pereira and Warren intended. However, as Pereira and

Warren explained, the declarative semantics has a large advantage over the procedural one.

It allows us to prove partial correctness of a Prolog program without using procedural

concepts - by understanding the program as a set of statements about the problem domain

and verifying those statements. To prove the correctness of Pereira and Warren's fragment

one must understand the implementation of Prolog - in particular, the way that variables are

renamed each time a clause is used.

In fact it is easy to ensure that different quantifiers bind different variables without using a

procedural interpretation. The variables in our translations will be chosen from the

sequence vO,vl,v2..., etc. Let the predicates S and VP each take an extra argument N,

which represents a lower limit on the variables bound in the translation or the quantifier

store. That is, if a quantifier in the translation or the store binds vM then M > N. We will

use this extra argument to keep track of the variables that have already been bound and

make sure they are not re-bound.

To formalize this, let the Prolog term var(N) denote vN. We represent the integers using

the constant 0 and the function letter "s" for "successor". Thus s(s(0)) denotes the number

2, and var(s(s(O))) represents the object language variable v2. As an abbreviation we write

v2 instead of var(s(s(0))), N+2 instead of s(s(N)), and vN+2 instead of var(s(s(N))).

Then we have

54

Report No. 6937 BBN Systems and Technologies Corporation

S([[3 VN [man vN]],[V vN+l [woman vN+1]]],[loves vN vN+1I,N) = [some

man loves every woman]

The last argument of the predicate S is the lower limit on the variables bound in the

translation or the quantifier store. The subject translation is vN and the object translation is

vN+ 1. These are distinct variables for all values of N. Thus the clause specifies that the

quantifiers bind distinct variables without specifying any particular variables.

Here is an example of a rule that uses this mechanism:

S(Q1,Wff 1,N) -- NP(Q2,vN) VP(vN,Q3,Wff2,N+1)

(This is an abbreviation of the full rule.) The subject translation is vN. The lower limit on

the VP is N+ 1, so if VM occurs in the VP translation or the VP store then M > N. Thus no

quantifier from the VP can bind the same variable that the subject quantifier binds.

In its general form this technique requires two extra arguments on each major category - a

lower limit and an upper limit. In our fragment embedded S's and VP's always appear at

the left end of a rule, and this allows us to simplify slightly by eliminating the upper limit.

3.4.2 The Rules

Each of our rules combines syntax and semantics, but for ease of exposition we first

present the syntax of our fragment without any semantics.

55

BBN Systems and Technologies Corporation Report No. 6937

RI start -4 s

R2 s -+ np vp

R3 np -- quant n

R4 quant -- [a]

R5 quant - [every]

R6 quant - [no]

R7 quant -- [the]

R8 np - Uohn], np -4 [mary], etc.

R9 np , np [and] np

R10 np -4np[or] np

R11 vp -v(trans) np

R12 vp - v(takes-s) s

R13 vp -4 v(intensional) np

R14 n -+ [italian], n -- [pizza], etc.

R15 v(trans) --+ [eat], etc.

R16 v(take-S) -4 [believe]

R17 v(intensional) -- [want], etc.

This syntax will derive sentences like "Every man loves some woman", "John believes that

the cat likes the fish", and so on. The rules R8 and R14-R17 are actually sets of similar

rules introducing terminal symbols. Notice that the transitive verb "want" is introduced by

a special rule, although its syntax is apparently the same as the syntax of ordinary transitive

verbs. This is done because the semantics of "want" is quite different from the semantics

of ordinary transitive verbs. Montague represented this difference with a meaning

postulate, which saved him from making two copies of the syntactic rule for transitive

verbs. We could avoid the duplication by a slight extension of our notation.

56

Report No. 6937 BBN Systems and Technologies Corporation

We now extend our rules to include semantics, beginning with np's.

R14a n(man) -+ [man]

R14b n(woman) -- [woman]

The symbol "man" is a predicate of one argument. The rules for other common nouns are

similar. We have used the same symbol for an English word and a predicate letter in the

thought language, which strictly speaking is illegal, but context should make the meaning

clear in each case.

The semantic representations of English quantifiers are logical quantifiers.

R4 quant(3) -4 [a]

R5 quant(V) - [every]

R6 quant(-3) - [no]

R7 quant(J!) -- [the]

The main rules for np's is:

R3 np([Q V [P VII,V) -) quant(Q) n(P)

The function letter "np" takes two semantic arguments: a quantifier and a variable. The

quantifier binds the variable.

Rules R3, R5, and R14 imply

57

BBN Systems and Technologies Corporation Report No. 6937

np([V V [man V]],V) [every man]

Since V is a free Prolog variable, any variable of thought language can be the translation of

the NP.

The rule for conjunctive np's is as follows:

R9 np([Ql A Q21,V) -) np(Q1,V) [and] np(Q2,V)

The complex quantifier [Q1 A Q21 must bind a single variable, so the two embedded

quantifiers must bind the same variable. To ensure this, we set the translations of the

embedded NP's equal to the translation of the whole NP. By R3, R4, and R14

np([3 V [man V]],V) :4 [a man]

np([3 V [woman V]],V) :! [a woman]

Then by R9

np([[3 V [man V]] A [3 V [woman V]]J,V) : [a man and a woman]

The rule for disjunctive np's is very similar:

RIO np([Q1 v Q2],V) -4 np(Q1,V) [or] np(Q2,V)

We now turn to np's without explicit quantifiers.

58

Report No. 6937 BBN Systems and Technologies Corporation

R8 np([I! V [name V john]],V) - [john]

"john" is a logical constant denoting a name, and [name V john] means that V is an object

whose name is John. Thus we accept the common view that "John" means the same as

"the person called John". We turn now to vp's and sentences without propositional

attitude verbs. Ordinary transitive verbs translate to predicates of two arguments:

R13 v(trans,like) -4 [likes]

L

The function letter "vp" has three semantic arguments: a variable V, a quantifier list, and a

wff W. The variable V represents the logical subject of the verb phrase. The quantifier list

will bind all the free variables in wff W, except for V. The rule for VP's with ordinary

transitive verbs is

R11 vp(V,[Q],IP V VN],N) -4 v(trans, P) np(Q,vN)

We have

v(trans,love) 41 [loves]

np([3 V [woman V]],V) :! [a woman]

and R 1 gives

vp(V,[[3 vN [woman vNII],[love V vNIN) ' [loves a woman]

59

BBN Systems and Technologies Corporation Report No. 6937

The rule for sentences is the most complex so far. It collects the quantifiers from the

subject and verb phrase into a single list, and splits that list into two sub-lists. The first

sub-list is applied to the VP translation to form the sentence translation. The second sub-

list becomes the quantifier store of the sentence. If the sentence is not embedded, its

quantifier store will be empty. If the sentence is the object of a verb like "believe", its

quantifier store contains the quantifers for those np's that receive de re readings. The

process of splitting the list of quantifiers is non-deterministic, and this non-determinism

gives rise to de re/de dicto ambiguities. The predicate split(LI,L2,L3) means that the list

Li can be divided into sub-lists L2 and L3. The following clauses define this predicate:

split([I],[M - L
split([XJL],XJMl1],M2) :-split(L,M 1,M2)

split([XILJ,Ml ,[XIM2]) :- split(L,M1,M2)

Here is the full version of the sentence rule:

R2 S(L3,Wffl,N) --+ NP(Q,vN) VP(vN,L2,Wff2,N+1)

{ split([Q I L2],LI,L3) apply(L1,Wff2,Wffl) }

The subject translation is VN, while the lower limit for variables in the VP is N+l. The

quantifier Q binds the variable vN, while L2 binds all the variables in Wff2 except vN, so

[Q I L2] binds all the variables in Wff2. This list is split into parts Ll and L3. The

quantifiers in L1 are applied to Wff2 to form the translation Wff 1 of the sentence, while the

quantifier list L3 becomes the quantifier store of the sentence. Since the quantifiers in LI

and L3 together bind all the free variables in Wff2, the quantifiers in L3 bind the free

variables that remain after applying the quantifiers in LI.

60

Report No. 6937 BBN Systems and Technologies Corporation

We illustrate this rule on the sentence "Every man loves a woman". We have

np([V V [man V]],V) ! [every man]

vp(V,[[3 VM [woman vM]]],[love V vNM) 2 [loves a woman]

Unifying with the right side of R2 gives [QI L2] = [[V vN [man vNI,[3 vN+l [woman

vN+1]]]. Suppose the predicate "split" returns Li = [Q I L2], L3 = [I]. The predicate

"apply" can apply the two quantifiers in two different orders, giving either

Wffl = [IV vN [man vN]] [[B vN+l [woman vN+l]] [loves vN vN+li]]

or

Wffl = [[3 vN+l [woman vN+1]] [[V vN [man vNI] [loves vN vN+l]]
U

Therefore R2 gives

S([],[[V VN [man VN]] [[3 vN+l [woman vN+l]] [loves vN VN+]1]]],N)

: [every man loves a woman]

and also

S([],[[3 vN+l [woman vN+1]] [[V vN [man vN]] [loves vN vN+l]]],N)

[every man loves a woman]

61

BBN Systems and Technologies Corporation Report No. 6937

If a sentence forms an utterance, then the quantifier store must be empty. Therefore the full

version of rule RI is

R1 start(Wff) -- S([],WffO)

We have already shown that the quantifier store of an S binds all the free variables in the

translation. If the quantifier store is empty, there are no free variables in the translation.

Then the translation of the start symbol is a sentence, which is just the translation we expect

for a full utterance. The lower limit on bound variables in the sentence is 0. Combining

this rule with the derivation given above we have

start([[V v0 [man vo]] [[3 vl [woman vl]] [loves v0 vl]]])

: [every man loves a woman] -

This approach to quantifiers requires less formal machinery than Montague's or even

Cooper's. There are no functions with complex higher types, only a modest extension of

first-order logic. There is no need to build a complex translation and then simplify - this

fragment builds a simple translation in the first place. As a result, much of the structure of

the original syntax tree is preserved in the translation. Each NP corresponds to a

quantifier, and if NPI is embedded in NP2 then the translation of NPI is embedded in the

translation of NP2. The quantifiers are moved from their original places in the tree, but the

variables bound by the quantifiers serve to mark the original places. Thus in the sentence

"Every man loves a woman", the NP "every man" is the subject of the verb "loves" and the

NP "a woman" is its object. In the translations given for that sentence the quantifier [V

vN] [man VN]1 binds the variable VN, which is the first argument of the predicate "loves".

62

Report No. 6937 BBN Systems and Technologies Corporation

The quantifier [3 VN+l [woman vN+l]] binds the variable vN+l which is the second

argument of the predicate "loves".

These remarks are not theoretical criticisms of Montague or Cooper. The theory of

functions of higher type is quite clear. The simplification has no theoretical significance in

Montague's or Cooper's work - it is a mere convenience. On the practical side, however,

there is a real problem. Montague grammar is very hard to do, and its warmest admirers

admit this. As a practical matter it is easier to work with expressions of first-order logic

than with functions of higher type, and easier to build a simple translation than to build a

complex one and simplify it. Artificial intelligence workers are committed to building large

fragments, and for them such practical considerations are important.

We turn now to the treatment of propositional attitudes, beginning with verbs like "believe"

and "know" that take sentences as complements. The translations of these verbs are

predicates of two arguments:

R16 v(takes-s,believe) -4 [believe]

Before giving the complete version of R12, we introduce some auxiliary predicates. The

function letter "S" has two semantic arguments: a wff, and a list of quantifiers that bind the

free variables of that wff. The q operator requires three arguments: a wff, a list of the free

variables in that wff, and a list of constants from the set K of special constants. In order to

obtain suitable arguments for the q operator we must take the quantifiers from the S, find

the variables that they bind, and construct a list containing a constant from K for each

variable. q-args(LI,L2,L3) means that Ll is a list of quantifiers, L2 a list of variables

bound by those quantifiers, and L3 a list of constants from K of the same length as L2.

63

BBN Systems and Technologies Corporation Report No. 6937

This predicate will take the semantic arguments of "S" and construct suitable arguments for

the q operator. Its definition is

q-args([],[],U)

q-args([[Q V P] I L],[V I M1],[K1 I M2]) :- in-k(K1) q-args(L,Ml,M2)

in-k(K1) means that KI is a member of the set K of special constants. It is defined by

axioms like:

in-k(arabic)

in-k(selfname)

Using these auxiliary predicates we can state the full version of R12.

R12 VP(V,L1,[P V [q L2 L3 Wfflll,N)

-- V(takes-S, P) S(LI,Wffl,N)

{ q-args(LIL2,L3) }

"q-args" will set L2 to a list of the free variables in Wffl, and L3 to a list of constants from

K, with L3 the same length as L2. Therefore the expression [q L2 L3 Wffl] is well-

formed and denotes a sentence.

Consider the VP "believes an Italian discovered America". We will simplify the example

by assuming that the translation of "America" is a constant, rather than a variable bound by

the quantifier 3!. We have

64

Report No. 6937 BBN Systems and Technologies Corporation

S([],[[3 VN [italian VN]] [discover vN america]N)

=- [an Italian discovered America]

and also

S([[3 VN [italian vN]]],[discover VN Americal,N)

41 [an Italian discovered America]

In the first derivation, the quantifier [3 VN [italian vN]] has been applied to the wff. In the

second derivation it is still in the quantifier store. Both derivations are possible because the

rule for sentences can either apply the quantifiers to the wff, or put them in the store.

Suppose we derive the object of "believe" by the first derivation. Applying rule R12 we

find that LI is the empty list, and therefore L2 and L3 are empty. Therefore we have

VP(V,[],[believe V [q [1 [][[3 vN [italian vN]I [aiscover vN america]lfl,N)

[believes an Italian discovered America]

In this case the quantifier is inside the scope of the belief operator, and the NP "an Italian"

has a de dicto interpretation.

Now suppose we derive the object of "believe" by the second derivation. Then Li = [[3

vN (italian vN]], L2 = [vN], and L3 has the form [k0], where k0 is an element of the set K

of special constants. We get

65

BBN Systems and Technologies Corporation Report No. 6937

VP(V,[[3 VN [italian vN]]],[believe V [q [vN] [kol [discover VN america]]])

41 [believes an Italian discovered America]

Here the quantifier is outside the scope of the belief operator, but it binds a variable inside

the scope. According to our theory, this means that the agent must have a vivid designator

for the person who he believes discovered America. One obvious choice is [t x [name x

columbus]] (assuming that we have introduced the . operator into our logical language).

Then the agent's belief would be

[discover [t x [name x columbus]] America]

We now consider intensional verbs like "want". In our theory a propositional attitude is a

relation between agents and sentences of thought language. Therefore in our treatment, the

verb "want" must build a thought-language sentence from the semantic features of its

object. We can see how this is to be done by noting that "John wants a Ferrari" is roughly

synonymous with "John wishes that he had a Ferrari". Our formalism cannot treat this

sentence as it stands, since we have no treatment of pronouns. Still we can write an

expression of thought language that represents its meaning. If the existential quantifier is

inside the scope of the verb "wish", the representation is

[[3! x [name x john]]

[wish x [q (x] [kl] [3 y [ferrari y] [have x yJl]]]

where kl is a constant denoting a kind of vivid designator. This says that John wishes that

a certain sentence be true, and that sentence has the form

66

Report No. "6937 BBN Systems and Technologies Corporation

[[3 y [ferrari y]] [have tl y]]

where tl is a vivid designator for John himself. This raises the question "Which vivid

designator?", and our answer naturally is that it must be John's selfname - the name he

standardly uses to refer to himself in his own beliefs and goals.

Given the tools we have developed so far, these ideas can easily be formalized. The

representation of an intensional verb like "want" consists of two predicates. The first

predicate represents a propositional attitude, the second one is the main predicate of the

sentence which is the object of that attitude. For "want" we have

R17a V(intensional,wish,have) - [want]

This means that "John wants X" is roughly synonymous with "John wishes he had X" (the

predicate letters "wish" and "have" need not be exactly synonymous with the English

words). For "seek" we have

R 17b V(intensional,attemptfind) - [seek]

This means that "John seeks X" is roughly synonymous with "John attempts to find X".

Here is the full version of R13.

P134 t ,1 1 V [q [V I L31 [selfname I_4] Wffl II,N)

V(intensional,P1,P2) NP(Q,vN)

67

BBN Systems and Technologies Corporation Report No. 6937

{ split([QILI ,L2)

apply(Ll,[P2 V vN],Wffl)

q-args(L2,L3,L4) }

This rule is complex, but it is easier to understand if we see that it combines the actions of

the rule R2 for sentences and the rule R12 for verbs like "believe". The rule first takes the

list [Q] containing the quantifier from the object NP and splits it into two parts Ll and L2

(since [Q] has only one element, either Li = [Q] and L2 = [] or L2 = [Q] and Li = []). The

quantifiers in LI are applied to the wff [P2 V VN] to form Wffl, while the quantifiers in

L2 go into the quantifier store. This is much like the rule for sentences.

The free variables of [P2 V VN) are the variables bound by Li and L2, plus the subject

translation V. After the quantifiers in Li are applied, their variables are no longer free.

Therefore, the free variables of Wff 1 are the variables bound by L2, plus V. The rule now

uses "q-args" to construct a list L3 of variables and a list L4 of special constants from K.

This is like the action of rule R12 for the verb "believe", but there is a difference. L3 and

L4 are not suitable arguments for the q operator, because L3 does not include all the free

variables of Wff 1. It leaves out V. Therefore the rule inserts [V L3] and [selfname 1 L4]

as the arguments of the q operator. This indicates that the selfname denotes the agent in the

proposition.

This rule gives two readings for the VP "wants a Ferrari". We have

NP([3 V [ferrari Vl],V) -L [a Ferrari]

v(intensional,wish,have) --+ [want]

68

Report No. 6937 BBN Systems and Technologies Corporation

Unifying with the right side of R13 gives [Q] = [[3 VN [ferrari vN]]]. Suppose that the

predicate "split" sets Li = [[3 vN [ferrari vN] and L2 = [I. Then the predicate "apply"

sets Wff 1 = [[3 vN [ferrari vN]] [have V vN]]. Since L2 = [], the predicate "q-args" sets

L3 =]and L4 = 0, and we get

VP(V,[],[wish V [q [V] [selfname] [[3 vN [ferrari vN]] [have V vN]]]],N)

[wants a Ferrari]

In this reading the quantifier is inside the scope of the propositional attitude. Suppose the

selfname of the subject is Me[1]. Then the object of the propositional attitude "wish" is

[[3 VN [ferrari vNI] [have Mel VNI

We can get the other reading, with the quantifier outside the propositional attitude, as

follows. Suppose that the predicate "split" divides [[3 vN [ferrari vNII] into LI = [] and

L2 = [[3 vN [ferrari VN]]]. Then Wffl = [have V vN], and L3 =[vN]. Therefore L4 has

the form [K1], where KI is a constant from K denoting a kind of vivid designator. It is

not clear what kind of vivid designator would be appropriate for a car, but that problem is

outside the scope of this paper, so assume that ko e K and let K = k0. With L4 = [ko], we

get

VP(V,[[3 vN [ferrari vN]I],Iwish V [q [V vN] [selfname ko] [have V vN]],N)

=! [wants a Ferrari]

Let us combine this VP with the subject "John" to form a sentence. We have

69

BBN Systems and Technologies Corporation Report No. 6937

NP([3! V [name V john]],V) : [John]

Applying the sentence rule to this NP and VP gives

Wff2 = [wish VN [q [vN vN+l] [selfname ko] [have vN vN+1]]]

The sentence rule will also apply the quantifiers to this wff. The order of application does

not matter in this case - both possible answers have the same truth conditions. One answer

is

[[3! vN [name vN John]]

[[3 vN+l [ferrari VN+l]]

[wish VN [q [VN VN+l] [selfname ko] [have VN vN+111111

This says that there is a particular Ferrari that John wants. Suppose that the vivid

designator that John uses to describe that Ferrari is fl, and John's selfname is Me l. Then

the object of "wish" is the sentence

[have Mel fl]

which contains no quantifiers.

As a final example consider "John wants a Ferrari or a Porsche". This sentence has a

reading which means that he wants any Ferrari or Porsche. The following sentence of

thought language expresses the meaning of this reading:

70

Report No. 6937 BBN Systems and Technologies Corporation

[[3! vo [name vo John]]

[wish vo [q [vol [selfname]

[[[3 vi [ferrari vil] v [3 vi [porsche vl]]] [have vo vlii]]]

The fragment generates this translation, as the reader can check.

3.5 Conclusion

We have shown that a sentential semantics for propositional attitudes can account for

quantifiers that stand outside the scope of a propositional attitude and bind a variable inside

that scope. Our fragment includes related phenomena: failure of substitution in the scope of

propositional attitudes, and the scope ambiguity in examples like "John wants a Ferrari".

Our treatment is compositional in the sense that the semantic features of a phrase are

constrained by the semantic features of its immediate constituents, not by global properties

of a parse tree. On the other hand, our notion of "semantic feature" is quite broad - a

variable denoting the logical subject is one of the semantic features of the verb phrase.

Perhaps this violates compositionality.

It seems pointless to argue about whether our treatment is really compositional. Instead we

will argue that our formalism has one very important property in common with Montague's

and Cooper's. There is a systematic connection between the syntax of a phrase and its

semantics, and this connection allows us to check that each rule gets input it can accept, and

that the final result makes sense. For example, we showed that the quantifier store of a

sentence always contains the quantifiers needed to bind all the free variables in the

71

IL5 *S1 *I_ *jj * aI~ * * . m

BBN Systems and Technologies Corporation Report No. 6937

translation. This is true because the quantifier from the subject binds the variable that

represents the subject, while the quantifiers from the vp bind all the other variables.

In other ways our treatment is very different from the possible worlds formalisms. We

translate to a first-order logic augmented with a quotation operator, rather than an

intensional logic. This language is at the center of our theory, because we claim that beliefs

and goals are sentences of the language. Montague regarded his intensional logic as a mere

convenience - his goal was to assign denotations in terms of possible worlds. Cooper

followed this line the whole way, abolishing the intensional logic and mapping sentences

directly to their denotations.

Montague and Cooper used possible worlds not just for their original purpose, to describe

possibility and necessity, but also to treat propositional attitudes and even adverbs. We

claim that this is a mistake. Possible worlds are an excellent tool for analyzing possibility,

necessity, and counterfactuals. They are not a semantic panacea. In particular, they are

irrelevant to the study of propositional attitudes.

As Moore said, a fragment based on a sentential theory must treat quantification into the

scope of an attitude quite differently from ordinary quantification. In fact we interpret

"quantifying in" as the substitution of a vivid designator for a variable. Moore is of course

right to Argue that other things being equal, we prefer a uniform treatment of quantification.

However, other things are not equal. It seems clear that what counts as a vivid designator

depends on context, and our theory allows for this by admitting extra arguments to the q

operator - arguments which specify which kind of vivid designator is intended. The

fragments based on possible worlds do not allow the meaning of "quantifying in" to

depend on context.

72

Report No. 6937 BBN Systems and Technologies Corporation

The extra arguments to the q operator lead to a proliferation of readings for sentences with

quantifying in. However, one can form a compact representation for the whole set of

readings by putting variables in the second argument of the q operator. For example, one

can write

[[3! vo [name v0 John]]

[[3 vl [ferrari vili

[wish vo [q [vO vil] [selfname Kl] [have vo vl]]]]]

to represent the set of all translations for the de re reading of "John wants a Ferrari". The

free variable KI ranges over kinds of vivid designators, and the program may be able to

choose a value for Ki from knowledge of the context without substituting each possible

value into the expression. This shows that the large number of translations generated by

the fragment does not automatically lead to computational problems.

S

This fragment has established that the sentential theory of propositional attitudes can

support a semantics for a fragment of English. In future work we hope to add "knowing

what" constructions and tenses. We also hope to develop proof methods for our logic,

leading finally to a question-answering program that can reason about propositional

attitudes.

73

BBN Systems and Technologies Corporation Report No. 6937

References

1. Cooper, Robin. Quantification and Syt,actic Theory. D. Reidel Publishing Company,

Dordrecht.

2. Churchland, Paul M. (1979). Scientific Realism and the Plasticity of Mind. Cambridge

University Press, Cambridge.

3. Haas, Andrew. A Syntactic Theory of Belief and Action. Artificial Intelligence 28

(1986), pp. 245-292.

4. Kaplan, D. Quantifying In. in L. Linsky (Ed.), Reference and Modality (University

Press, London, 1971) 112-144.

5. Konolige, K. A Deduction Model of Belief. Morgan Kaufmann Publishers, Los Altos,

California, 1986.

6. Moore, R. C.. Propositional Attitudes and Russellian Propositions. Report No. CSLI-

88-119. Center for the Study of Language and Information, Stanford, California, 1988.

7. Levesque, H. J. A Logic of Knowledge and Active Belief. In Proceedings of the AAAI,

Univeisity of Texas at Austin, 1984.

74

Report No. 6937 BBN Systems and Technologies Corporation

8. Montague, R. English as a Formal Language. in Linguaggi nella Societa nella Technica,

B. Visentini et. al., eds., pp. 189-224 (Edizioni di Comunita, Milan, Italy, 1970).

9. Pereira, F. C. N., and D. H. D. Warren. Definite Clause Grammars for Natural

Language Analysis. Artificial Intelligence 13 (1980), pp. 231-278.

10. Perlis, D. Languages with Self-Reference I: Foundations. Artifical Intelligence,

25(1985), pp. 301-322.

75

BBN Systems and Technologies Corporation Report No. 6937

76

Report No. 6937 BBN Systems and Technologies Corporation

4. Aiding Design with Constructive Plan
Recognition

Bradley A. Goodman, BBN Systems and Technologies Corporation

Diane J. Litman, AT&T Bell Laboratories Inc.

4.1 Introduction

We are working towards an intelligent interface to a complex application system that

enhances the abilities of a human. The enhancement comes from providing the system with

a better notion of what the user is doing (his "plan") so that the system can unburden the

user and perform some of the operations itself. These improvements are evidenced through

graphical and menu-driven interactions between the system and the user. The system will

serve as a cooperative partner with the human in the performance of the task and during any

error recovery. Computer aided design systems provide a perfect forum for applying such

an intelligent interface since the human designer is creating his design on the fly. We have

chosen chemical process design as our domain for demonstrating such an intelligent

interface.

Success in such a system involves efficiently designing an application domain process,

such as a chemical plant, through fully integrated human-machine interactions with a

computer aided design system, and not simply passing the human's design from one

isolated subcomponent (e.g., a graphics drawing program) to another (e.g., a simulator).

77

BBN Systems and Technologies Corporation Report No. 6937

Success also requires adapting the system to the particular user under a variety of

application domain conditions. Advances in interface technology will improve overall

system performance and result in more efficient human-machine interactions; advances in

system adaptation will enhance the accuracy of the system and increase the user's

performance. Success, however, will occur not simply because of the graphics interface

technology but due to the added strength derived from plan recognition as part of a new

level of tools provided to the user. We are providing a new way of applying and using this

technology for design.

Design is a creative task to formulate an arrangement of elements to define some process.

Today's commercial design tools come in two categories: computer aided design drawing

tools and computer aided design simulators. The drawing tools are graphics programs that

allow the designer to draft the design on the display. The computer aided design simulators

provide numerical simulations of the process being designed to allow the designer to both

evaluate his design and specify it more precisely.

What is missing from the current generation of design systems is an intelligent interface that

assists the designer during the generation of the graphics representation of the design.

While the numerical simulator helps determine the validity of the design itself, an intelligent

graphics interface can assist the designer incrementally as he composes the design. It can

advise him, as he proceeds, that what he is doing looks reasonable both locally (e.g., two

components are correctly connected) and globally (e.g., the design fits in with other

designs already known by the system).

With plan recognition we will provide another layer of sophistication to the user interface

technology to make design systems much easier to use while making them more powerful.

78

Report No. 6937 BBN Systems and Technologies Corporation

Our plan recognition tools attempt to surmise the purpose of the user's actions and the

particular design he is producing. Understanding the user's purpose allows the system to

catch mistakes by the user, to produce the desired effect from less than appropriate actions,

and to provide shortcuts where appropriate. By attempting to infer and monitor the user's

design over time, the system could cut down design time by recognizing and suggesting

where the user could use existing subassemblies (found in the system's design library),

prevent redundancy, acquire new designs for future sessions, and detect and recover from

invalid designs.

In the first section of the paper we describe how to extend current plan recognition

technology to provide the required support to an intelligent interface. The second section

then outlines how such a plan recognizer can augment a computer aided design system.

4.2 Extending Plan Recognition

In a typical plan-based interface system, a plan recognizer interprets a sequence of actions

!3 by constructing an underlying plan structure. This structure is then analyzed and

manipulated in order to extend the capabilities of the associated natural language (or other)

interface. Unfortunately, current plan recognition systems have little to say about novel

plans, defined here to be novel sequences of actions achieving a novel set of goals. For

example, plan recognizers typically search for known goals that are explained by novel

action sequences, or "parse" observed actions in terms of precompiled action sequences.

In other words, plan recognizers typically assume that they have complete and predefined

knowledge of a user's plans or goals. As a result, plan recognition just entails fitting an

observed user action into an expected (implicitly or explicitly) user plan.

79

79

It

BBN Systems and Technologies Corporation Report No. 6937

In this section we present an approach to plan recognition that relaxes the assumption that

the system's knowledge of the user's plans and goals is complete. By removing this

assumption, our plan recognition algorithm cannot be limited to matching into a predefined

set of expected plans or goals. It must be more constructive in nature and attempt to fill in

potential knowledge gaps. It must do this by attempting to distinguish a purposeful plan

from a sequence of random actions and objects.

We illustrate in Section 1.3 the utility of constructive plan recognition in the context of a

plan-based process design system. Design appears to be an excellent forum for applying

plan recognition. Recent research projects in Al and design (Tong, 1987a) have expanded

design systems from mere bookkeepers to active participants in the design process. We

believe that a plan-based system can add a further layer of sophistication to design

interfaces, e.g., by recognizing known designs, determining when new designs are

reasonable, and providing diagnostic support when they are not. Furthermore, design

appears to be especially suited for the recognition and acquisition of novel plans: since the

user is typically creating new designs, the system's design library is inherently incomplete.

4.2.1 Taking Plan Recognition Seriously

Plan recognition algorithms use knowledge of likely plans to infer the intent behind

particular input actions. The use of plan recognition to enhance both natural language and

other interface systems has been widely documented in the artificial intelligence literature

(Allen and Perrault 1980, Bruce 1987, Carberry 1985, Cohen 1978, Genesereth 1979,

Kautz 1986, Carver et al. 1984, Litman 1987, Pollack 1986a, Sidner 1985, Schmidt et al.

1978, Wilensky 1983). Several strategies have been employed to recognize and track a

user's plan (Allen 1979, Sidner 1985, Carberry 1985, Kautz 1986). These plan

80

Report No. 6937 BBN Systems and Technologies Corporation

recognition strategies use a plan library: a description of typical plans that might occur in a

particular domain. On the basis of the library and description of an action, plan recognition

algorithms produce (possibly partial) descriptions of the corresponding plan. Allen's

algorithm (Allen 1979) uses a heuristic search to choose a preferred plan, while others

(such as Sidner's (1985) or Kautz's (1986)) allow the recognition to occur incrementally.

None of these implementations, however, have been embedded inside a complete working

application. As a result, crucial issues of robustness, reliability and inherent limitations

remain. In particular, most current algorithms make the incorrect assumption that valid and

complete plan knowledge is specified and shared by all agents, and they do not consider the

fact that users often make mistakes or get sidetracked. Our research attempts to rectify

these deficiencies.

First, we wish to remove the assumption that the system's knowledge of the user's plans is

complete. This is especially necessary in the context with which we are concerned,

computer aided design (CAD), where the user is often creating new plans (i.e., new

designs). If we remove this assumption, however, our plan recognition algorithm cannot

be limited to matching into a predefined set of expected plans. It must be more constructive

in nature and attempt to fill in potential knowledge gaps when presented with novel plans.'

It must do this by attempting to distinguish a purposeful plan from a sequence of random

actions and objects. For example, constructive plan recognition should be able to use local

knowledge about primitive actions, such as effects and preconditions, 2 to knit actions

IFollowing in spirit the Hypothesize and Revise paradigm employed in Believer by Schmidt et al. (1978)
and the plan reconstruction employed in Genesereth's automated consultant (Genesereth 1979).
2 1n the traditional planning representations that form the basis for most plan-based systems, action
descriptions are represented as operators on a world model (Fikes and Nilsson 1971, Sacerdoti 1974).
Preconditions are conditions that need to hold in the world model before the action operator can be applied.
Effects are statements that are asserted into the world model after the action has been successfully executed.

81

I I i i I P i i - !

BBN Systems and Technologies Corporation Report No. 6937

together into a complete plan. It should also be able to use what incomplete knowledge of

higher level plans it has to acquire new plans. Unlike previous plan recognition

approaches, CPR thus marries (rather than separates) plan generation, plan acquisition, and

plan recognition.

Second, plan recognition inherently involves communication between agents, whether it is

done linguistically or otherwise. However, agents have imperfect skills and can be sloppy.

Thus, communication is often approximate and even errorful, leading to possible

miscommunication (Goodman 1986). For example, even in the simplest plan recognition

scenario where an agent successively executes steps in a shared plan, while another agent

(the system) successively tries to reconstruct and track the user's plan based on the user's

actions, the user can make mistakes, e.g. by executing the wrong action in a plan. If the

system cannot construct any reasonable plan from the user's actions, CPR will use the

source of disparity to help detect and repair the miscommunication. Current plan

recognition systems, in contrast, would just fail.

Although cther implications of multiple agents remain, we will not focus on them at this

time. For example, while we relax the assumption that knowledge is complete across

agents, we will assume that any remaining shared knowledge is correct and still consistent

across agents. For work that explicitly focuses on the relaxation of various knowledge

correctness assumptions to repair invalid plans, see Pollack (1986a, 1986b) and Carberry

(1985, 1986). Pollack took a major step forward by dropping that assumption and

demonstrating how to handle misconceptions based on action disagreements. She provided

a new model of plan inference based on the analysis of plans as mental phenomena.

Carberry also departs from the previous views. She is concerned with user models and

how differences between those of the speaker and hearer can lead to disparities in the

82

Report No. 6937 BBN Systems and Technologies Corporation

speaker's plan and the one inferred from the speaker's utterance by the hearer. She argues

that handling disparate plans requires an enriched context model. She describes in

(Carberry 1986) how to drive a negotiation model to make the models of the speaker and

hearer agree. We also assume that plans do not require true collaborative behavior amongst

agents. Again, we will see that this is a reasonable assumption to make in the context of an

intelligent CAD system. For relaxation of this "master-slave" assumption, see the work of

Grosz and Sidner (1987).

4.2.2 Constructive Plan Recognition

Existing plan recognition techniques operate in a "syntactic" framework. They perform a

process similar to parsing by attempting to fit observed user actions into an expected user

plan (as defined by a joint library of plans or goals), not unlike a language that defines all

possible sentences (cf. Sidner (1985), Huff and Lesser (1982), Carver et al. (1984)). CPR

attempts to extend this parsing analogy by developing a cascaded parsing algorithm

(Woods 1980). However, while a traditional cascaded parser uses semantics to verify or

eliminate existing syntactic choices, our algorithm uses semantics to construct additions to

the incomplete syntactic language. That is, if CPR cannot parse an observed action

sequence, it attempts to determine whether or not the sequence could be part of the plan

language (i.e., is "purposeful") by applying semantic information.3 Purposeful actions

must be able to be seen as being part of an action sequence on the way towards achieving

some goal. In the case of novel sequences, however, that goal is not necessarily known.

3Allen and Perrault (1980) suggest a similar scheme but they assume a non-null expectation and always

recognize a complete plan.

83

BBN Systems and Technologies Corporation Report No. 6937

CPR uses plan generation and plan modification techniques to determine whether novel

sequences of actions are potentially "purposeful." For example, CPR incrementally

examines (using local backward and forward chaining) the effects and preconditions of

actions in an action sequence and the propagation of those effects to determine whether or

not they fit together well.4 However, when effects of earlier actions neither violate nor

achieve preconditions of later actions, CPR can say nothing definitive about the causal

structure of the plan. Instead, the desired interactions must be viewed as expectations that

need to be satisfied before the plan specification is through in order for the action sequence

to remain valid. Because CPR uses bottom up techniques to incrementally verify the

coherence of action sequences, the search explosion involved in earlier bottom up

approaches to plan recognition (where search spaces were generated to propose action

sequences) can be controlled.

Alternatively, failed "plan parses" from an incomplete library, along with techniques of

case-based and adaptive reasoning (e.g., Alterman (1986), Broverman and Croft (1987),

Hammond (1987), Kass (1986), Kolodner et al. (1985), Koton (1988), and the DARPA

Workshop on Case-Based Reasoning (1988)), can also be used to determine if novel

actions and goals are reasonable plans. However, the integration of plan modification

techniques with plan recognition from first principles is an interesting open question. As

will be seen in Section 1.3, we currently leave this control problem in the hands of the

user.

4 1f an effect of one action violates a precondition of a later action in the sequence, then a plan generator
determines if another action (other than directly undoing the original action) could be hypothesized to restore
the desired precondition. If so, the input is considered potentially purposeful.

84

Report No. 6937 BBN Systems and Technologies Corporation

Finally, if after application of the above techniques an action sequence still cannot be

considered purposeful, CPR assumes that an error has occurred. The system interrupts

and calls a plan relaxation component that uses the information present in the failed

recognition attempt to provide diagnostic support to debug the plan. This component

follows in spirit the relaxation mechanism developed by Goodman (1986) to deal with

extensional reference failures.

4.2.3 An Example

Consider the following simple example to illustrate CPR. Figure 1 illustrates a portion of a

plan hierarchy containing plans about Naval operations. The top-most plan is "END." In

the lower part of the hierarchy we describe three plans: Protect, Exercise, and Rescue.

Decomposition of each plan into their respective action sequence is also shown (the small

arrows point to the actions that are to be executed in the sequence from top to bottom). In

Figure 2 we provide more detailed specifications of some of the actions composing the

plans.

Assume we observe the actions by a ship and its crew shown in Figure 3. Consider first

the case where the bracketed step is missing: the ship shipi moves from location loc I to a

new location loc2, patrols around the area regionl, tests one of its systems system I, and

then returns to its originating location locl. Then the action sequence we have is an

instance of the Exercise plan since it matches each of its steps.

85

BBN Systems and Technologies Corporation Report No. 6937 -

END

move

Exercise - y'patrol
test-system

move

move

locate mv

Rescue move patrol Protect

board use-system

Figure 1: An action and decomposition hierarchy of naval operations

Tes t-System(sh: sh ip,sy: system,t: time)
descr: "Test system sy on ship sh at time t"
precondition: have(sh:ship,sy:system,t:time)
effect: know(c :commander,status(sh :ship,sy: system,t: time))

Move(sh: ship,loc 1i]:ocation,loc2: location,t: time)
descr: "Move ship sh from location loc I to

location lOc2 during time tC
precondition: at(sh:ship,loc 1. locationjt 1: time)
effect: at(sh:shiP,loc2:Iocation,t2:timne), t2>t 1

Figure 2: Defining some naval actions

86

Report No. 6937 BBN Systems and Technologies Corporation

move(ship 1 :ship,loc I :location,1c2:location,t:time)
patrol(ship 1 :ship,region 1 :region,t':time)

as test-system(ship 1 :ship,system l:system,t 1 :time)
[test-system(ship 1 :ship,system2,system,t2:time)]
move(ship 1 :ship,loc2:location,loc 1 :location,t":time)

Figure 3: A sequence of naval actions

Now suppose the bracketed step, "test system2," is present. The expanded action

sequence would not be recognized as any of the the plans defined in Figure 1 under the

standard plan recognition algorithms since the action sequence no longer matches exactly

any plans in the action and decomposition hierarchy. 5 With CPR, however, the plan could

be recognized as a reasonable and novel plan since, for example, the effects of the first
"test-system," (know[c:commander,status(ship 1 :ship,system 1 :system,t:time)]), do not

conflict with the preconditions of the second, (have[ship 1:ship,system2:system,t:time]).

CPR, hence, views the action sequence as potentially purposeful. By contrasting the effect

of the second "test-system" to the complete "Exercise" plan in the hierarchy, it could even

conjecture that an "Exercise" plan has occurred. This conjecture is reasonable because the

second "test-system" does not change the effect or negate any precondition of any other

action in the "Exercise" plan. In Section 1.3, we describe other ways for CPR to extend

the incomplete syntactic knowledge using semantics.

5Actually, the Kautz plan recognition algorithm (Kautz 1987) would be able to recognize the plan as two
overlaid plans that share steps. Hence it would recognize the sequence as two DIFFERENT exercises being
performed.

87

BBN Systems and Technologies Corporation Report No. 6937

4.2.4 Implications of CPR

Constructive plan recognition involves problem solving where one induces on the fly

semantic generalizations on the plan library hierarchy. Instead of expending a lot of effort

ahead of time to encode a very precise and complete hierarchy with lots of abstract entities -

represented, we form (and thus "learn") the generalizations on the basis of semantics. The

burden, thus, is moved from the library to extensive descriptions of individual actions and

their effects from which plans in the library are composed. Such actions, however, are

much easier to isolate, especially in domains such as computer aided design where the

actions are limited to those provided by the software (e.g., a graphics action such as "add

icon") and those induced by the application domain itself (e.g., "connect pipe" or "react" in

a chemical process domain). This switch in emphasis away from the library specification is

a necessary change for computer aided design since designers typically create new designs

not yet in the library.

The CPR algorithm, thus, entails searching libraries of plans and actions, matching

(partially) against entries in those libraries, and chaining through the effects and

preconditions of actions. CPR "parses" observations to fit a certain structure and evokes

semantics when it fails. Its plan grammar, thus, is incomplete. One possible approach to

implementing CPR is to view it as a chart parsing problem. In that model, the constituents

being parsed are not words or phrases, but actions and plans.

Parsing algorithms generally have a complexity that is polynomial tractable. True plan

parsing schemes, too, are polynomial tractable. They can recognize in polynomial time any

underlying plan structure that may exist in the input. They do not attempt, however, to find

all possible constituents that could go tcgether. The Kautz (1986) algorithm goes beyond

88

LI
Report No. 6937 BBN Systems and Technologies Corporation

finding partial constituents and attempts to find all the covering sets over the entire input.

This methodology allows it to recognize, for example, simultaneously executed plans or

plans with shared steps. The increase in coverage, however, leads to possible exponential

combinations. With CPR, we are interested in the more tractable case where one gives up a

complete covering of the input. For design, however, that makes sense since it would be

unrealistic to find such a covering in the first place.

4.3 Aiding Design with Plan Recognition

Numerous Al design tools are being developed. Most of them embrace an expert system

framework where the user provides specifications to the design tool and the tool then uses

its expert knowledge to develop a design that meets the user's requirements. These include

the more knowledge-based approaches that view design as a problem-solving activity (c.f.

(Brown86,Mittal86)). Such approaches are making numerous advances in computer aided

design but we feel that they are after the very difficult and computationally complex task of

automatic design. We attempt in this work to view design as a partnership between the

human designer and the system. That way we can make more progress by simplifying the

problem to one whose solution would still be very useful to the human designer. We

would also address an area currently neglected by Al researchers in the design task,

providing tools for permitting design capture (Tong 198 7 a). Plan recognition provides the

key to these advances.

89

I-i
BBN Systems and Technologies Corporation Report No. 6937

4.3.1 Taking Design Seriously

The advent of computer aided design emphasizes the need for friendly interfaces to design
am

tools, i.e., interfaces between the designer and the design tools to facilitate such

interactions. Natural language interfaces are one possibility (Samad 1986) but standard

graphic interfaces make even more sense. Most design domains involve physical objects

that have standard graphic symbols that are used by designers on paper to sketch out a

proposed design. Most CAD systems require the designer to convert his graphical sketch

into a language that represents the essence of the design. For example, one could translate

different electronic components and electrical connections between those components into a

data structure that described the components and connections. The early CAD systems

required the designer to make this translation by hand. More and more CAD systems

today, however, are graphics-based and provide their own translation (actually a kind of

parsing) to the data structures then used by design tools such as a simulator. The graphics

system is more adept to handle the numerous parameters as designs become more and more

complex.

Today's commercial design tools tend to come in two categories: CAD drawing tools and

CAD simulators. The drawing tools are graphics programs that allow the designer to draft

the design on the display. The program can draw and manipulate complex graphical

objects to precise scales. The program can also perform bookkeeping for the designer,

remembering dimensions, connections between components, and so forth. The CAD

simulators provide numerical simulations of the process being designed to allow the

designer to both evaluate their design and specify it more precisely (e.g., in a chemical

90

Report No. 6937 BBN Systems and Technologies Corporation

process, you may be able to specify precisely the reaction and layout components but you

might not know how large a storage vessel is necessary until you run the simulator).

What is missing from the current generation of design systems is an intelligent interface that

assists the designer during the generation of the graphics representation of the design.

While the numerical simulator helps determine the validity of the design itself, an intelligent

graphics interface can assist the designer incrementally as he composes the design. It can

advise him, as he proceeds, that what he is doing looks reasonable both locally (e.g., two

components are correctly connected) and globally (e.g., the design fits in with other

designs already known by the system).

4.3.2 Constructive Plan Recognition for Design

We believe that computer aided design is an excellent forum for applying constructive plan

recognition. In a typical CAD system (Brown 1986, Mittal 1986, Tong 1987a, Tong

1987b), a user employs a design tool to incrementally assemble portions of a design (i.e a

plan) on a graphics display. The tool, in turn, could provide support for the design

process, by providing editing facilities, simulations to evaluate a design, record keeping

and enforcement of constraints among segments of the design, and access to a design

library. Since the user is typically creating new designs, the system's design library is

inherently incomplete. CAD is thus an especially robust domain for CPR. Furthermore,

we propose to use CPR to provide another layer of sophistication to the user interface

technology. By attempting to infer and monitor the user's design over time, the system

could cut down design time by recognizing and suggesting where the user could use

existing subassemblies (found in the design library), prevent redundancy. acquire novel

designs for future sessions, and detect and recover from miscommunication. For example,

91

. .. pao mmi mmmlml l I l l l

BBN Systems and Technologies Corporation Report No. 6937

a chemical engineering CAD system could automatically generate, for some of the user's

design steps, the most probable continuation of the design by the user and display it dimly

on the screen. The user could then either choose the system's suggestion or continue

differently. Suppose the user places a Still on the display. A Still has a precondition of a

heated mixture on its input. If there are no outputs so far that are heated, the system could

then add a "phantom" Heat Exchanger on the Still's input. Similarly, CPR can resolve

ambiguities in a design. If the user adds a Still to the output of an already placed Heat

Exchanger (a component which can be used in both heating and cooling actions), that

requires that the Heat Exchanger "heat" and not "cool" since a precondition of a Still is a

heated input.

To achieve such assistance, we need to describe actions and effects at several levels. We

must know the kinds of actions the design tool can perform (such as manipulation of

graphic symbols) as well as actions that occur in the domain our design tool is assisting.

We can provide a means for the user to specify high-level goals that he is attempting to

satisfy. Even though his complete plan is not available to the system, it can generate

portions of the plan on the basis of the high-level goals and the actions requested of the

system by the user.

Our proposed application of CPR to CAD involves a chemical engineering workstation

developed to assist in the design of chemical plants. The workstation provides graphic

support for putting together the representations of the physical components of the plant

(e.g., pipes, vessels, centrifuges, reactors), a process description language for specifying

the chemical process to take place, and a simulator for testing out the process specified by

the user. CPR can help detc,,rmine if a partial design is reasonable and provide diagnostic

support when it is not. When CPR recognizes that the user is adding a particular

92

Report No. 6937 BBN Systems and Technologies Corporation

* subassembly to the plant design, it can provide a shortcut for the user by allowing him to

let the system flesh out the rest of the details of the subassembly. The overall goal is for

CPR to help the user as unobtrusively as possible.

The plan-based system that we propose uses the graphics description, general knowledge

about what makes a coherent plan (e.g., precondition and effect chains), and a potentially

incomplete library of specific designs to build up a functional description of the associated

chemical process. In our CAD scenario, a user is constructing a design (plan), and the

system is assisting based on the design (plan) library informally defined in Figure 4.

The action hierarchy consists of the two plans REACTION-1 and REACTION-2 and the

six primitive actions REACT, TRANSFER, COOL-IN-REFRIG-STORE, COOL-BY-

1 HEAT-EXCHANGER, HEAT-BY-HEAT-EXCHANGER, and DISTILL. In particular,

REACTION- I consists of three steps: the reacting of two substances A and B (resulting in

the creation of C), the transferring of C, followed by the cooling of C in a cooling unit.

REACTION-2 similarly is composed out of the three steps HEAT-BY-HEAT-p
EXCHANGER, TRANSFER, and DISTILL. Details of three of the primitive action

descriptions are shown in Figures 5 and 6.61 (The notation "C:substance" refers to a

variable C restricted to be of type substance.) We have chosen an extremely simple (and

obviously unrealistic) example because it allows us to focus solely on the limitations in plan

recognition and design that we wish to address.

I 6We are being very loose in the representation of our actions here. We intend to use a more precise
formalism such as the one developed by Schmolze (1987) for naive physics.

93

I.

BBN Systems and Technologies Corporation Report No. 6937

REoACTiON-I REACflKON-2T COOL MDC S ARATE MOVE

HEAT-BY-HEA4T COOL -14-AREFRK3-STORE COOL-BY-HEAT-EXCCHAHOIER
-EXCHANGER

1 EATJ A ibc -*fiOarmC~cx C:substance

Reactio n1[TRANS FEP(CsibtaneRCTreackr.S-rR--re.Pplp)

~ OOOL-BY-REFG-SOE(Cdsitice)

HEAT-BY-HEAT-XCHAGE(Dztbsance)

Reaction-2: TRN E(zbtei~oaocagrTsi.p*

Emsubstance

F:substance

E F-

Figure 4: The design library: an action and decomposition hierarchy

94

Report No. 6937 BBN Systems and Technologies Corporation

COOL-IN-REFRIG-STQRE(c:substancet:time)
precondition:

volume(c:substance,ti :im)<volunie(refrig-storetl :time)
not-in-refrig-store(c:substance,ti :tim)

effect:
ternperature(c:substance,ti :time)

>temperature(c:substance,t2:time)
not-in-refrig-store(c:substance,t3: time),

tl <t2<t3
constraint:

in-refrig-store(c:substance,t2), tl <t2<t3

COOL-BY-HEAT-EXCHANGER(c:substance,t:time)
precondition:

not-in-heat-exchanger(c:substance,ti :time)
effect:

temperature(c:substance,ti :time)
>temperature(c:substance,t2:time)

not-in-heat-exchanger(c:substance,t3:tirne),
tj <t2<t3

constraint:
in-heat-exchanger(c: substance,t2: time), tl1<t2czt3

Figure 5: Defining the cooling process

p DISTILL(c:substance,stl:still,t: time)
precondition:

input(stl:still,tl :time):=c:substance
liquid-mixture(input(stl:still,ti :time))
heated(input(stl:still,tl :tixne))

effect:
OutPut(stl:still,t2:time)=components(input(stl:still,tl :time)),

tl~t2.

Figure 6: Defining the distillation process

First, let us assume that this design library is complete, and that the user designs an

instantiation of REACTION- I by first introducing the REACT (by placing a reactor icon on

95

BBN Systems and Technologies Corporation Report No. 6937

the display), followed by the introduction of COOL-IN-REFRIG-STORE (by placing a

refrigerated store icon on the display), and then performs a TRANSFER (by connecting a

pipe between the reactor icon and the refrigerated store icon). This design can easily be

"parsed" using the "grammar" of the design library, in the manner of existing plan

recognition systems. Furthermore, the recognized plan can then be used to enhance the

design interface. For example, once the plan recognizer has unambiguously inferred the

user's design, the system can use the design library to finish the remaining design details.

Now, however, let us remove the assumption that the system's design library is complete.

That is, although the system and the user have the same repertoire of primitive actions, the

system does not have complete knowledge of how these primitive actions can be combined.

This allows a user to hive a plan in mind that the system has never seen before (which is in

fact what one would expect out of a CAD system). For example, assume the user is

designing REACTION-3, consisting of a REACT, followed by a COOL-BY-HEAT-

EXCHANGER, and then a TRANSFER. In this case the plan recognizer must be able to

recognize a semantically (rather than syntactically) coherent plan. As discussed above, by

incorporating existing as well as new techniques of plan generation and plan modification,

CPR can use its incomplete planning knowledge towards this end. Consider a few simple

examples:

Plan Acquisition by Plan Modification

After observing the REACT, a traditional plan parser would postulate that REACTION- I is

being designed; after observing COOL-BY-HEAT-EXCHANGER the process would fail.

CPR, however, could use the failed expectation, COOL-IN-REFRIG-STORiT. to help

recognize the input sequence as a coherent plan. In particular, CPR can postulate

96

!I - - - i nI_.~ .----N ! -

Report No. 6937 BBN Systems and Technologies Corporation

substituting the primitive action COOL-BY-HEAT-EXCHANGER for COOL-IN-

REFRIG-STORE in REACTION-I, since the effects of COOL-BY-HEAT-EXCHANGER

and COOL-IN-REFRIG-STORE are similar and they both are instances of COOL. The

design system could then use REACTION-I in the design library as a template and suggest

to the designer the TRANSFER between the reactor and the refrigerated store. The new

sequence can then be stored as, say, REACTION-3. Hence, we recognize the design not

by first principles but by modification of an already know design (Alterman 1986,

Broverman 1987, Hammond 1987, Darpa 1988).

* Plan Acquisition by Plan Generation

Now suppos REACTION-I is not in the decomposition hierarchy. In this case, CPR can

only use local knowledge about actions to determine if the design REACT/COOL-BY-

HEAT-EXCHANGER/TRANSFER is purposeful. For example, if the effects of the react

achieve the preconditions of the cooling, the combination can be seen as purposeful, due to

causal connection, and the sequence acquired. In contrast, if the effects violate the

preconditions, the combination is not purposeful and plan relaxation is called (as below).

Note that we need not just consider consecutive actions. For example, suppose the effects

of REACT neither violate nor achieve the preconditions of COOL-BY-HEAT-

EXCHANGER. At this point, CPR can not say anything definitive other than that the two

actions are neither incompatible nor compatible with each other. Instead, a chaining of

preconditions and effects through potential action sequences is needed to see if the current

action could be consistent with previous ones.

_9

97

BBN Systems and Technologies Corporation Report No. 6937

Notice that the design system can, even in the two cases illustrated here, provide advice to

the designer by suggesting likely next additions to the design. For example, after viewing

the REACT followed by COOL-BY-HEAT-EXCHANGER, it could suggest the

TRANSFER action by drawing dimly a pipe between the output of the reactor and the input

of the heat exchanger. The designer could accept the suggestion or provide his own.

* Non-Acquisition and Plan Relaxation

Finally, suppose we observe a COOL-BY-HEAT-EXCHANGER of substance C followed

by a COOL-IN-REFRIG-STORE of the same substance. Plan generation knowledge

would lead the system to determine that the proposed action sequence was redundant since

the second COOL does not change the state of the world. Undoing a previous action can

also be invalid. Suppose a MIX of two substances A and B to form another substance C is

followed by a SEPARATE of C into its component parts A and B. That, too, would

appear non-purposeful. 7 In these cases CPR postulates that miscommunication has

occurred and calls the plan relaxation component to determine what was meant. The design

system, hence, has become a partner in the design process alerting the designer to possible

mistakes and suggesting how to recover.

4.3.3 An Example - Designing a Butane Isomerization Process

To give a larger perspective of the system we are proposing, we consider here a more

complete example. Butane isomerization is a chemical process for changing the normal

71n a more realistic action hierarchy, such an undoing of a previous step isn't necessarilv invalid. For
example, in a chemical plant, a solid substance might be mixed with a liquid substance bo that it can be
transported through a pipe (such as a slurry of chopped coal mixed with water); the solid and liquid
substances are then separated.

98

Report No. 6937 BBN Systems and Technologies Corporation

H H H H H H H

JC-C-H H-1(j- -- C--H

H H H H H H

H-C--- H

n-Butane I

i-Butane

Figure 7: Butane isomers

configuration of n-butane (C4H10) to its isomer form i-butane (see Figure 7). The

isomerization of butane can be accomplished commercially by reacting n-pentane with n-

butane and separating out the resulting i-butane and the reaction by-products in a distillation

column (hereafter called a "still"). The standard process for achieving this is shown in

Figure 8. Note that any unchanged n-butane is separated from the reacted mixture by the

still and recycled into the feed of the reactor. To avoid enriching the inert n-pentane, some

of the recycling steam is released. We assume that the quantity of catalyst fed into the

reactor is constant and that the still is set up to the prescribed parameters for performing the

separation.

99

BBN Systems and Technologies Corporation Report No. 6937

n-Butane
n-Penlane

reactor

heat exchanger

s ull

I-Butne store

Figure 8: Butane isomerization

We assume for the sake of our example that our design library contains only the butane

isomerization design shown in Figure 8. The user of our proposed plan-based computer

aided design system (which we call "CHECS" for CHemical Engineering CAD System)

selects one component at a time, adding them to the display of the evolving design, and

selects graphical actions one at a time, to perform on the components. Figure 9 provides an

illustration of a simple chemical process design system. In the figure, the designer has

already placed three components on the screen - two "Feed"s and one "Reactor." In Figure

10, the user adds a "Pipe" between an output of one of the "Feed"s and an input to the

"Reactor" by selecting "Add-Pipe" from the menu and indicating with the mouse the

beginning and end points of the pipe. CPR tracks the user's selected actions, noting both

100

Report No. 6937 BBN Systems and Technologies Corporation

the graphics-level actions (e.g., Add-Icon, Remove-Icon, Move-Icon, etc.) and their

corresponding chemical process actions (e.g., Add-Reactor, Add-Pipe, etc.) taken. It

updates the effects of an action (and any implications thereof) and will contrast them against

the preconditions of the next user action as well as the effects of previous actions. It

compares the design so far with those in the design library.

File Edit Euai Tools Windows Feed Substance

_______ CHECS Object 4l EPlant Design
syr ight 1988t

NT "Copyrigh Frieieidi f 1edl F- eed
NT "k

'E: Before a. rReact o~r
CKDRAW file

"ie a pipe i HeatEHchan er1
iw betwveen th
.object Pipe FS-iIDReactor)

ome to Al leg r e t i uq e
ding "HD8O:Li Cnrf

,right 1988 -f--fldd--Pipe--

OW-CLICK-EVE
e e e P p -

-Delete-Part-_

-Redraw-

Figure 9: Adding components to the design

101

BBN Systems and Technologies Corporation Report No. 6937

b File Edit Eual Tools Windows Feed Substance

CHECS Object e Plant Design
;Copyright. 1988

(PRINT "Coprigh Feed
(PRINT -

;NOTE: Before e) [ReactoR
;QUICKDRRW file !

;define a pipe ii HeatExchan er i

;draw between tht
(defobject Pipe (Reactor]

Store I
Welcome to Alfegro. * Centrifuge
;Loading "HD80:Li

"Copyright 1988 (-- Rdd--Pipe--j
WINDOW-CL I CK-EVET

-"Delete-Pipe-

-Delete-Part-
Applicat i

I . [Redraw_-)

Figure 10: Adding a pipe between components

Now, suppose our designer knows that he already has in his stock of components a

"heated reactor" (a reactor that comes with built in heating coils). To save costs, he applies

a different perspective on butane isomerization. He knows that a "Heated Reactor" can

provide him with the same results as placing a "Heat Exchanger" on the output of a

standard "Reactor." In Figure 11, he specifies the "Reactor" to be of type "Heated Reactor"

102

Report No. 6937 BBN Systems and Technologies Corporation

by double-clicking on the reactor icon to yield a menu of reactor types and then selecting

the entry for "Heated Reactor." At this point, the user's design conflicts with those in the

design library (in the example here, the one design shown in Figure 8). The effects,

however, of his addition of the "Heated Reactor" match those formed by the connection of

the "Pipe" to the "Reactor" and "Heat Exchanger" in the design in the library. Hence, the

system views the new design as being both purposeful and novel (at least to this point in

the design process). 8 It can suggest the addition of the "Still" and the "Store" now that it

has acquired a match against the butane isomerization design in the design library. The

resulting design is shown in Figure 12. If at the end of the design process all the

preconditions and effects are not connected (for example, if the designer did not provide

"heat" to the input to the "Still"), the design cannot be seen as purposeful. In that case the

design system interrupts the designer and points out design errors from its causal

perspective (e.g., the required "heating" action did not occur).

4.4 Summary

We propose that a more constructive view of plan recognition is needed to provide

robustness to plan-based systems. In particular, plan recognition must contend with a fact

about the world: agents have incomplete knowledge of each other and of the world.

However, if we drop the completeness assumption, previous plan recognition technology

no longer suffices. We have proposed a framework, CPR, that is designed to survive

without the completeness assumption. CPR supports the recognition of novel user plans

and the detection and correction of miscommunication in user plans. By adding "semantic"

8Notice that it would have been a more difficult task if the design library contained the butane isomerization
design containing the heated reactor but not the one using the separate reactor and heat exchanger. The plan
recognizer would have to recognize that the effects of the heated reactor were now spread between two
components, the reactor and the heat exchanger.

103

BBN Systems and Technologies Corporation Report No. 6937

knowledge to the plan recognition process, CPR can extend its syntactic knowledge.

While this extension introduces its own limitations (e.g., the construction operators expand

the search space), we can avoid these limitations by providing assistance locally and only

popping to a more global level when the designer has provided enough information to

elucidate his goals.

EdtQ Eual Tools Windows Feed Reactors

CHECS Object |O Plant Design
it, 11988 bS

:opyright

:efore exe (Reactor) Fe eeedd

IWJ file fr

I pipe in HeatExchanqer-
.ween thea

:t Pipe *F TI HeatedReactor -

Store

Centrifue)

-- Add--Pipe-- j

-Delete-Pipe-

-IDelete - Part-
Applicati

Figure 11: A novel approach to butane isomerization

104

Report No. 6937 BBN Systems and Technologies Corporation

_I dit Eval Tools Windows Feed Substance Reactors

CHECS Object -=0 Plant Design
)88 by Br

Di1

I- ight 196 FFe- d

ReatorFeed Feed•-e execut (Reactor] '

Ile from

)e in ter HeatExchanger)
ithem

pe *dial HeatedReactorl

Store
l Iegro CL C

"-tlfu
- eL

O:Lip: I Centrifue
88 - Bra -fodF-

Di --A dd--Pipe--
I EUENT-HAI

-Delete-Pipe-j
[Store]

F-Delete-Part - I

Applicati - r

I I

Figure 12: The completed novel butane isomerization design

Computer aided design can benefit greatly from the addition of an intelligent interface. Plan

recognition can provide context-sensitive actions to the interface technology to make it more

reactive to user's needs. Constructive plan recognition provides a boost to CAD by

105

BBN Systems and Technologies Corporation Report No. 6937

promoting its status to a helpful partner in the design process. CAD, supplemented by the

knowledge gained by plan recognition, can recognize novel designs, detect mistakes, and

give suggestions.

References

Allen, James F. A Plan-Based Approach to Speech Act Recognition. PhD thesis,

University of Toronto, 1979.

Allen, J.F., and Perrault, C.R. Analyzing intention in utterances. Artificial Intelligence

15(3):143-178, 1980.

Alterman, Richard. An Adaptive Planner. In Proceedings of AAAI-86, pages 65-69. -

Philadelphia, Pa., August, 1986.

Broverman, Carol A. and W. Bruce Croft. Reasoning About Exceptions During Plan
Execution Monitoring. In Proceedings of AAAI-87, pages 190-195. Seattle, Wa., July,
1987.

Brown, David C. and B. Chandrasekaran. Knowledge and Control for a Mechanical
Design Expert System. Computer 19(7):92-100, July, 1986.

Bruce, Bertram. Robot Plans and Human Plans: Implications for Models of

Communication. In I. and M. Gopnik (editors), From Models to Modules: Studies in
Cognitive Sciences from the McGill Workshops, pages 97-114. Ablex, Hillsdale, New

Jersey, in press.

Carberry, Mary Sandra. Pragmatic Modeling in Information System Interfaces. PhD

thesis, University of Delaware, 1985.

106

I..| |..I. .. . P.I: II. . I I I I I I I IIiE IE h~ N i..-| II i -i ,_ q _ , . . .

Report No. 6937 BBN Systems and Technologies Corporation

Carberry, Sandra. User Models: The Problem of Disparity. In Proceedings of
COLNG-86, pages 29-34. Bonn, West Germany, August, 1986.

Carver, N.F., Lesser, V.R., and McCue, D.L. Focusing in Plan Recognition. In
Proceedings of the National Conference on Artificial Intelligence, The American
Association for Artificial Intelligence, Austin, TX, 1984.

Cohen, Philip R. On Knowing What to Say: Planning Speech Acts. PhD thesis,
University of Toronto, 1978.

Defense Advanced Research Projects Agency. Proceedings of the DARPA Workshop
on Case-Based Reasoning, 1988.

Fikes, R. E. and Nilsson, N. J. A new approach to the application of theorem proving

to problem solving. Artificial Intelligence 2:189-208, 1971.

Genesereth, Michael R. The Role of Plans in Automated Consultation. In Proceedings
*! of IJCAI-79, pages 311-319. Tokyo, Japan, August, 1979.

Goodman, Bradley A. Reference Identification and Reference Identification Failures.
Computational Linguistics 12(4):273-305, October-December, 1986.

Grosz, B.J. and Sidner, C.L. Plans in Discourse. In P. Cohen and M. Pollack
(editors), Discourse, Communication and Intention. Massachusetts Institute of
Technology Press, Cambridge, Ma., in press.

Hammond, Kristian J. Explaining and Repairing Plans that Fail. In Proceedings of
IJCAI-87, pages 109-114. Milain, Italy, August, 1987.

Huff, Karen and Victor Lesser. Knowledge-Based Command Understanding: An

Example for the Software Development Environment. Report TR 82-6, Computer and
Information Sciences, University of Massachusetts at Amherst, Amherst, Ma., 1982.

107

I.

BBN Systems and Technologies Corporation Report No. 6937

Kass, A. Modifying Explanations to Understand Stories. In Proceedings of the

Cognitive Science Society, pages 691-696. Amherst, Ma., 1986.

Kautz, Henry A. and Allen, James F. Generalized Plan Recognition. In Proceedings of

AAA1-86, pages 32-37. Philadelphia, Pa., August, 1986.

Kautz, Henry A. A Formal Theory of Plan Recognition. PhD thesis, University of

Rochester, 1987. Also, TR215, University of Rochester, Dept. of Computer Science,

Rochester, N.Y

Kolodner, Janet L., Robert L. Simpson, Jr., and Katia Sycara-Cyranski. A Process

Model of Case-Based Reasoning in Problem Solving. In Proceedings of JJCAI-85,
pages 284-290. Los Angeles, August, 1985.

Koton, Phylis. Model-Based Diagnostic Reasoning Using Past Experience. Talk in the

BBN Laboratories Al Seminar Series, BBN Laboratories Inc., Cambridge, Ma., June

14, 1988

Litman, Diane J. and James F. Allen. A Plan Recognition Model for Subdialogues in

Conversations. Cognitive Science 11:163-200, 1987.

Mittal, Sanjay, Clive L. Dym, and Mahesh Morjaria. PRIDE: An Expert System for the

Design of Paper Handling Systems. Computer 19(7): 102-114, July, 1986.

Pollack, Martha E. Inferring Domain Plans in Question-Answering. PhD thesis,

University of Pennsylvania, 1986. Also, Report MS-CS-86-40 of the Department of

Computer and Information Science, University of Pennsylvania.

Pollack, Martha E. A model of plan inference that distinguishes between the beliefs of

actors and observers. In Proceedings of the 24th Annual Meeting of the Association of

Computational Linguistics, pages 207-214. Columbia University, New York, N.Y.,

June, 1986.

108

Report No. 6937 BBN Systems and Technologies Corporation

Sacerdoti, Earl D. Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence

5:115-135, 1974.

Samad, Tariq. A Natural Language Interface for Computer-Aided Design. Kluwer

Academic Publishers, Boston, 1986.
U

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. The Plan Recognition Problem:

An Intersection of Psychology and Artificial Intelligence. Artificial Intelligence 11:45-

83, 1978.

Schmolze, James. Physics for Robots. Technical Report 6222, BBN Laboratories Inc.,

Cambridge, Ma., September, 1987.

L Sidner, Candace L. Plan parsing for intended response recognition in discourse. J

Computational Intelligence 1(1): 1-10, 1985.

Tong, Christopher. Al in engineering design. Artificial Intelligence in Engineering

2(3):130-132, 1987.

Tong, Christopher. Toward an engineering science of knowledge-based design.

Artificial Intelligence in Engineering 2(3): 133-166, 1987.

Wilensky, Robert. Planning and Understanding. Addison-Wesley Publishing

Company, Reading, Ma., 1983.

Woods, W.A. Cascaded ATN Grammars. Amer. J. Computational Linguistics 6(1):1-

15, Jan.-Mar., 1980.

I- 0

109

BBN Systems and Technologies Corporation Report No. 6937

110

Report No. 6937 BBN Systems and Technologies Corporation

5. Distributed Know-How and Acting:
Research On Collaborative Planning,

m Barbara J. Grosz, Harvard University

Candace L. Sidner, BBN Systems and Technologies Corporation

5.1 Introduction

Our research project is aimed at the construction of an intelligent agent that can collaborate

with other agents in the design and performance of plans to achieve shared objectives.

Collaborative planning and action are required for a range of tasks involving multiple

agents, including such undertakings as artifact construction (e.g., assembly tasks, building

construction, and contracting), financial management, and team activities (e.g., moving

equipment, search and rescue management, musical performances).

* Although substantial research has been undertaken in the areas of multi-agent planning

systems [Geo87a,Ros82,Mor86], none of this work provides for collaboration in the

planning process. In particular, the research presumes that the plans of multiple agents can

be defined in terms of the private plans of individual agents. This work has assumed that

all coordination of the actions of different agents can be done by one central master or that

the individuals can form their own plans completely before coordinating with other agents.

Research under the first assumption has articulated an architecture for multi-agent planning

in which a central agent creates plans that are then given to a set of agents to carry out; the

1Several portions of this paper are taken from [GS88].

111

-- . . . , -t mm m m m m mmm mm m m IH im mm m m m

BBN Systems and Technologies Corporation Report No. 6937

central agent has or must obtain all the information relevant to the plan construction, and

does not rely on another agent to play a role in the planning process. Under the second

assumption each agent's plans are private. There is a need to share information only when

an agent recognizes that some part of its plan will need to be coordinated with what it

assumes is the plan of the other agent. Should that coordination be needed, the two agents -

will interact to establish the coordination point

Although this research has addressed key issues in a number of areas (e.g., providing

formal techniques for reasoning about the beliefs of multiple agents and for coordinating

[externally] the actions of multiple agents [Kon84,Moo85], the design of methods for

handling conflicts among the desires of different agents [Ros82,Wil83], and providing

techniques for synchronizing actions of multiple agents to avoid harmful interactions), the

basic models of plans are insufficient to support collaborative planning. Algorithms for

plan recognition (which has been shown to be crucial to discourse participation

[Bru75,SSG79,Al179,Sid83,KA86]) are likewise not sufficient to support recognition in

the context of a collaborative plan.

Collaboration occurs in two ways in planning: (1) the planning process itself may be

collaborative, or (2) the plan agents come to have may involve collaborative activity.2 In

the planning process, any aspect of a plan may be a subject of negotiation and collaborative

consideration. The agents may make together such decisions as what goal they wish to

achieve, what actions performed by each will achieve that goal, and when they will do each

action. To make these decisions requires sharing information that may be known only to

one agent. Negotiation is required to determine goals that are of mutual value and to

reconcile disagreements when goals are not. Participation thus requires communication.

2We use the term plan for a collection of beliefs and intentions as in Pollack's [Po186] and our own
previous work [GS88]. We use recipe (or blueprint) for a set of actions, performed by any agent, that lead
to a desired goal.

112

L

Report No. 6937 BBN Systems and Technologies Corporation

Many acts are not under the sole control of one agent, and hence interactive participation by

all agents is required.

The outcome of this dynamic planning process is a plan held by the agents. When the planU
is collaborative, it is a configuration of mutual beliefs about the actions to be performed and

relations among those actions, and of the intentions of the two agents to perform actions.

When the plan is to be performed by one agent, the plan is a configuration of that agent's

beliefs and intentions about the action and action relationships; the two agents also share

mutual beliefs, but only about the one agent's plan.

Serious consideration of dialogue makes it clear that an assumption that one agent is in

control is the wrong basis on which to build a theory of planning and acting. We call any

such assumption the master-slave assumption. This assumption encourages theories that

are unduly oriented toward there being one controlling agent and one reactive agent. Only

one agent has any control over the formation of the plan; the reactive agent is involved only

in execution of the plan (though to do so he must first figure out what that plan is). We
U

conjecture that the focus of speech act and plan recognition work on single exchanges

underlies its (implicit) adoption of the master-slave assumption. To account for extended

sequences of utterances, it is necessary to realize that two agents may develop a plan

together rather than merely execute the existing plan of one of them. That is, language use

is more accurately characterized as a collaborative behavior of multiph active participants.

Language use is not the only form of cooperative behavior which requires a notion of

collaborative plans. A variety of nonlinguistic actions and plans cannot be explained solely

in terms of the private plans of individual agents (cf. Searle[Sea88]). For example,

consider the situation portrayed in Figure 1. Two children each have a pile of blocks; one

113

BBN Systems and Technologies Corporation Report No. 6937

child's blocks are blue, the other's green. The children decide to build together a tower of

blue and green blocks. It is not the case that their plan to build this tower is any

combination of the first child's plan to build a tower of blue blocks with some empty

spaces (in just the right places to match the other child's plan) and the second child's plan

to build a tower of green blocks with some empty spaces (again in just the right places).

Rather, they have a collaborative plan that includes actions by each of them (the first child

adding blue blocks, the second green ones). In a more practical vein, the concept of

collaborative plans provides a foundation for theories of collaborative behavior that could

provide for more flexible and fluent interactions between computer systems and users

undertaking joint problem-solving activities (e.g., systems for diagnosis).

In this paper we discuss characteristics of the collaborative planning process, define

collaborative plans involving a number types of different actions and action relationships

and present evidence for the collaborative view from videotapes of agents planning and

performing a complex task.

5.2 The Collaborative Planning Process

Collaboration occurs in planning situations where more than one agent is required to

produce and act on joint plans that satisfy their common goals. The collaborative planning

process can be characterized by three basic features: negotiation of common goals and of

the appropriate sequence of actions to achieve the goals, limited knowledge of each

participant, and distributed potential for action.

114

________U - -

Report No. 6937 BBN Systems and Technologies Corporation

pA6..

Figure 1: A Collaborative Block Building Example

115

BBN Systems and Technologies Corporation Report No. 6937

The goals of a plan need not be the choice of only one of the agents. Rather, one agent

may have a need that others join in satisfying, or several agents may together identify

common goals. They must necessarily negotiate in order to determine which of their goals

are to be attempted (when not all can be), and in which order they might actually be

satisfied (when more than one is undertaken). When negotiating a common goal, agents are "

not guaranteed that they will succeed in reaching accord. Hence, establishing the common

goal is a part of the collaborative planning process.

Plans that require a common goal necessarily include collaboration; no one agent can solely

determine the goal because agents may lack information critical to knowing what the

common goal is. The goal becomes common in part by sharing information about

individual goals with other agents. In addition agents lack the power to determine

agreement for other agents. By this we mean that each agent can choose to assent or

dissent to a proposed common goal. No agent can do this for another (without prior

approval, a matter that can be quite complicated in its own right), and agents who are not

free to agree or disagree are not able to collaborate. Thus collaboration does not occur

when one agent determines another's goals without consent of that agent. For example, a

slave does not participate with his or her master in a collaborative negotiation of a goal

since the slave is not permitted to disagree.

Typically no single agent has all the knowledge needed to produce a plan that satisfies the

common goal. Each agent contributes different know-how to the planning process by

communicating to others of some of their individual, relevant knowledge. Typically they

share information such as knowledge of the circumstances in which the actions will take

place, of beliefs about the reasons for failures of previous plans to succeed and of

116

Report No. 6937 BBN Systems and Technologies Corporation

knowledge about the actions that each agent can perform.

The circumstance of partial information on the part of planning agents can motivate agents

to participate in planning collaboratively (as well as, we conjecture, in seeking information

through activities such as spying when they wish not to collaborate). Information is partial

in the large when agents lack knowledge of each other's knowledge; it is partial in the small

for any single agent who lacks knowledge or belief about his own internal state. Partial

information in the large characterizes most of the planning process devoted to sharing

individual knowledge about the circumstances, errors and actions mentioned above. While

partial information in the small may seem a contradiction in terms, it is not. Many times a

human agent will inform others that he is unaware of what he believes or knows with

respect to an action or desire; he often requests time in which to determine just what it is

that he believes.

Just as know-how is distributed among the agents, so is the potential for action. No single

agent may be able to perform all the actions called for in the plans. Rather, each agent must

determine what she can contribute to the collaborative planning process and what actions

she can undertake that will accomplish part (or all) of the common goal. In addition to

determining one's own possible contributions, an agent must negotiate collaboratively

about (1) what actions will bring about the desired outcome; (2) which agent will perform

each of the actions that are agreed to. Just as with common goals, the collaboration in this

negotiation arises from the partial information distributed among the agents and from the

individual right to assent or dissent. Negotiation is needed because no one agent is in a

position to decide for other agents what they will do, and because the agents may have

differing beliefs about what actions will bring about the desired outcome. Hence each

agent must individually contribute some of its private knowledge and may form individual

117

BBN Systems and Technologies Corporation Report No. 6937

intentions that are appropriate to the overall plan configuration.

Collaborative planning is a cyclic process, not a one-shot deal. The cycle is evident in the

process of deciding what action will be done and who will do it, because the two matters

are interdependent. What action is chosen often depends on who can do it as well as what

act, in the abstract, might lead to the desired outcome. This cycle also illustrates that

planning is interactive not simply because communication is interactive but also because of

the interdependence among the kinds of information needed to make a decision.

The other evident cycle in planning is the planning and acting cycle. Nilsson et al. [NCRF]

suggest that collaborating agents plan a part of a task and then do it. Our data support the

intuition that this is often the case. In fact agents can often be uncertain of how they will

reach the overall (end) goal, and can proceed with planning a sub-part of what they believe

is on the way to the goal. They do so not simply to behave in a cleanly modular way.

They must plan and act on the partial information they have about the world and the final

outcome since complete information often is not available.

5.3 Shared Plans

We have defined a construct, SharedPlan of multiple agents, that summarizes the agents'

holding of certain beliefs and intentions when they act collaboratively [GS88]. A

SharedPlan accounts in part for the collaborative behavior we believe is manifest in most

distributive planning and acting circumstances. The definition is based on Pollack's

definition of a single agent having a simple plan. 3. Like that work, our definition differs

3This means for the moment we will only consider actions related by generation; we will discuss the
extension to enabling relationships later.

118

Report No. 6937 BBN Systems and Technologies Corporation

from previous research in taking a plan to be a configuration of beliefs and intentions about

actions and their executability rather than a data structure encoding a sequence of actions.

This is not to say that what Pollack calls the recipe, i.e. the actions and their

interrelationships are not important; beliefs about these actions and relationships are a

central element of the plan. Rather the recipe alone is not sufficient. It is only a part of

what is established in planning and in the plan that the agents come to hold.

Our definition of a SharedPlan departs significantly from previous research in providing a

means of specifying a plan that involves action by several agents as well as the associated

beliefs and intentions. The definition provides for (1) the inclusion of action relations

among actions performed by more than one agent, and (2) the introduction of mutual

beliefs that the agents must hold. In particular two agents, Gl and G2, will be said to have

a SharedPlan to perform an action A just in case they have the following beliefs and

intentions:

SharedPlan (G 1 G2 A) <*

1. MB(G1 G2 (EXEC (ao,G,)))

2. MB(.......)

3. MB(G 1 G 2(INT (G,, a,)))

4. MB(G1 G2(INT G,, BY(a,, A)))
5. INT (Gi , aj)

6. INr (G,, BY (,,,, A))

The index j ranges over all of the acts involved in doing A; for each or, one of the agents,

GI or G2, is the agent of that action. That is, the action consisting of the act-type az1

119

BBN Systems and Technologies Corporation Report No. 6937

done by agent G I or G2 (as appropriate), at time t contributes to G I and G2's plan to

accomplish A. Like Pollack, we use the constructor function ACHIEVE to turn properties

(i.e., states of affairs) into act-types. If GI and G2 construct a SharedPlan to have a clean

room, we will say there is a SharedPlan(G I G2 Achieve(Clean-room)).

The content of clause (2) depends on the types of actions being done. So far we have

developed definitions of three classes of SharedPlans: they involve simultaneous actions
by two agents, conjoined actions by two agents and sequence of actions by two agents!.

In this paper we will discuss each.5

5.3.1 Simultaneous Action

Simultaneous actions are an example of the kind of activity that requires collaborative

planning. They form the basis of one type of SharedPlan. To obtain the result of

simultaneous actions (a condition in the world) requires actions on the part of both agents at -

the same time. A simple example of such an action is lifting a heavy object. For there to be

a shared plan involving simultaneous action, the agents involved must hold the following

mutual belief:

MB(G1,G2, [OCCURS (a,,G1, T1) t*GEN (/3,y,G2, T1) &

OCCURS (.8,,G2 , T1) c:* GEN (,,y ,G, T 1) TO)

This formula stipulates that the participants believe that the performance of action , by

G2 at time TI GENerate (informally, read as "lead to") the desired outcome Y when and

only when there is an occurrence of action cri by G1 also at time TI; in addition the

4Typically in a complex plan, several types of relations among actions will hold. The resulting version of
clause (2) will be more complex than we will illustrate.5We also have considered single agent plans with collaborative negotiation of the goal but we will not
discuss them here.

120

Report No. 6937 BBN Systems and Technologies Corporation

performance of action o, byGI attimeT1 GENerate the desired outcome Y when and

only when there is an occurrence of action P, by G2 at TI.6 This formula records

several features of the use of simultaneous actions. First, the appropriate simultaneity

relation will hold only when actions by both agents produced the desired outcome. For if

either agent's actions alone produce the desired outcome Y , then this formula will fail to

hold. Second all actions must be undertaken at the same time (TI), an intuitively relevant

condition of simultaneity. Third, each agent's actions must and can GENerate the desired

outcome only in the presence of the other's actions; one agent's actions do not occur simply

as a means of causing or enabling the actions of the other agent that generate Y

For example, suppose G 1 and G2 have a SharedPlan to pick up a large, heavy box. G I is

to pick up one end (c,) and G2 the other (j3,) Gl's action, undertaken when G2 is

performing her action, will generate having picked up the box. This statement is

insufficient to describe the conditions for successful simultaneous action; G2's action is

more than a mere coincidence that happened when G 1 started lifting. It is intentional and

intended to work with G l's action. G2's action likewise generates picking up the box only

when G 1 is also undertaking the lifting. Hence, simultaneous actions achieve the desired

goal only when the actions of both agents together lead to the outcome.

Since SharedPlans stipulate mutual belief between the agents, the conditions under which

these beliefs come to be held is crucial to the SharedPlan. Typically agents communicate in

order to bring about mutual belief; they also can rely on visual recognition when they are

co-present and can see each other. It is not the case that all the mutual beliefs must be either

6Following Pollack [Pol86], we have adopted Allen's interval-based temporal logic CA1184] as the basic
formalism for representing actions. We use Pollack's modification of the predicate representing the
occurence of an action, OCCURS: the predication OCCURS (Of , G, t) is true if and only if the act-type
a is performed by G during time interval t. We also adopt Pollack's use of Goldman's [Gol70] generates
relation.

121

I- -*

BBN Systems and Technologies Corporation Report No. 6937

communicated or observed. In the constructed, very simple discourse below, which is

taken from our previous paper (GS88], the utterances provide explicit mention of mutual

beliefs of desires, and intentions, and of assent to the actions to be undertaken. There is no

mention of the mutual belief about the GEN-simultaneous relation for lifting the piano. As

we shall see, in this case, it can be inferred

Discourse DI:

1. S l: I want to lift the piano.

2. S2: OK.

3. I will pick up this [deictic to keyboard] end.

4. SI: OK

5. I will pick up this [deictic to foot] end.

6. 52: OK.

7. Ready? -

8. S 1: Ready.

We assume, as described in previous work, that the participants can infer from utterances

(1), (3), and (5).

(1) MB(S1,S 2, Desire(S 1 lift(piano))

(3') MB(S1,S2, INT ($2 lift(keyboard -end)))

(5') MB(S1,S 2, INT (S1 lift(foot -end))).

From (I'), rules of conversation, and appropriate assumptions about the agents'

cooperativeness ilar type of SharedP(vide[GS88]), they can infer that

MB(S1, S2, Desire (S1, Achieve (SharedPlanl (SI, S2, lift (piano)))))

122

Report No. 6937 BBN Systems and Technologies Corporation

Hence, following utterance (1), G2 could (coherently) respond in any one of the following

ways:

0 explicitly dissent from accepting the SharedPlan ("I can't help now."),

* implicitly dissent ("I hurt my back."),

* explicitly assent to construct a SharedPlan (above example),

* implicitly assent to construct a SharedPlan ("Which end should I get?

Do you have a handtruck?").
LI

In Utterance (2), S2 explicitly assents to work on achieving the SharedPlan for lifting the

piano. Utterance (3), by providing the information in (3'), provides information needed for

the SharedPlan. It expresses the intentions exhibited in clauses (3) and (4) of the

SharedPlan, and implicitly expresses S2's belief that S2 can execute the intended action.

S I's assent to this proposed action in utterance (4) allows derivation of mutual belief of

executability as well as the relevance of this act to achieving the desired goal

(i.e. a portion of the belief exhibited in clause (4)). Utterance (5), analogously to

Utterance (3), expresses intentions (now additional ones) exhibited in clauses (3) and (4),

as well as a new individual belief about executability. Utterance (6) allows derivation of

mutual belief of executability.

This discourse does not include any explicit mention of the generation relationship

exhibited in Clause (2). From the context in which (3) and (5) are uttered, the participants

can infer that the mentioned actions are seen to participate in a generation relationship with

the desired action. That these actions together are sufficient is implicit in utterances (7) and

(8). SI and S2 can now infer that the generation relation exhibited in Clause (2) holds.

123

BBN Systems and Technologies Corporation Report No. 6937

Their SharedPlan comprises the following mutual beliefs and intentions:

SharedPlan 1(81 S2 lift[piano])

1. MB(S1 S2 (EXEC (lift(foot-end)) S1)) & (MB(S1 S2 (EXEC

(lift(keyboard-end)) S2)))

2. MB(S1, S2, GEN-simultaneousflift(foot-end) & lift(keyboard-end),

lift(piano), S1 & S2])

3. MB(S1 S2 (INT S2 (ift(keyboard-end)))) & MB(S1 82 (INT S1 (lift(foot-

end))))

4. MB(S1 S2 (INT 82 (BY (lift(keyboard-end)) ift(piano)))) & MB(Si S2

(INT SI (BY (lift(foot-end)) lift(piano))))

5. INT(S2 ift(keyboard-end)) & INT(S1 lift(foot-end))

6. INT(S2 (BY (ift(keyboard-end)) lift(piano))) & INT(S1 (BY (lift(foot-end))

lift(piano)))

The use of the concept of a SharedPlan eliminates the need for any notion of one agent

intending for another agent to intend some action; i.e., we have no need for clauses of the

form Intend(G1 Intend (G2 Do (Action))). Rather (as exhibited in Clause (2)), the

participants must have mutual belief of the ways in which actions by each agent done

simultaneously generate a single (joint) action [namely, lift(piano)]. As stated in clause (6),

S2 intends to lift the piano by lifting the keyboard-end (alone); she can do this only because

she believes (there is a mutual belief) that S I will simultaneously lift the foot-end.

5.3.2 Conjoined Actions

A similar type of SharedPlan may be constructed when the actions of two agents taken

124

Report No. 6937 BBN Systems and Technologies Corporation

together, but not necessarily performed simultaneously, achieve a desired result. For

example, a table may be set by two people each of whom performs some of the necessary

actions (e.g., one putting on the silverware, the other the plates and glasses). In such

cases, there is a simple conjunction of actions, rather than a need for simultaneity. That is,

although the actions must all be performed within some time interval, say T, they need

not be performed at exactly the same time. For this case, SharedPlan2(G1, G2,

Achieve(conjoined-result)), Clause (2) is of the form

MB(G1 , G 2 A'., OCCURS(a,, G, T.) OCCURS(y, 1& G 2 TE)]T O)

where DURING(T, TE)

and

(3 a,, ENABLE[(OCCURS , G, T,)), (OCCURS(ak, G,, T)))

Whereas the time intervals Ti must all be within the interval T E, they may or may not

overlap or be disjoint. In addition the conjoined actions cannot serve to enable one another.

Again, more briefly,

MB(G1,G 2,GEN -Conjoined[(a, ,y,G1 & G 2, TE)]T 0).

A discourse or dialogue for this variant is similar to that of the simultaneous action; the

main difference is in exact times at which the actions are done.

125

BBN Systems and Technologies Corporation Report No. 6937

5.3.3 Sequences of Actions

A somewhat more complicated variant of SharedPlan is one in which a sequence of actions

together generate the desired action. For example, turning a door knob followed by pulling

on the door knob together (under appropriate conditions, e.g., the door being unlocked)

generate opening the door.

For SharedPlan3(G 1, G2, Achieve(Sequence-result)), Clause (2) is of the form

MB(G1, G 2 ,[A. OCCURS(a,, G.,, T) <=* OCCURS(ry, G1 & G 2, T)]T O)

where START (T, T.) and FINISH(T, TE) and MEETS(T, T+1)

and -, (3 aj, ak ENABLE[(OCCURS (a,, G.,)T.)) (OCCURS (k , G. 'Ta))]).

Or, more briefly

MB(G1, G 2, GEN -Sequence[ar,,7, G1 & G 2, TE]T 0).

The interval T meets the next interval in the sequence and the intervals fully span the

interval TB of 7/. The case of a sequence of actions achieving a desired action is not the

same as an action enabling another action. Both a and 0 must be done to achieve Y, and

a must be done before [3 , but a does not enable I3 . In the door knob example,

turning the knob does not enable pulling on it; this can be seen quite simply by noting that

one can also pull and then turn. The two actions together achieve opening the door.

126

Report No. 6937 BBN Systems and Technologies Corporation

5.3.4 Enablement

As Pollack [Pol86] has pointed out, the enabling relationship and the way it enters a plan

introduces a number of complexities into the plan formalization and recognition process.

Although, a detailed treatment of enabling relationships awaits further research, we can use

a simple example to illustrate how enabling relations would fit within a SharedPlans.

Consider the utterance, "Please pass the butter." in the context of the speaker's eating

dinner with the hearer, and the dinner including corn on the cob (and nothing else that is

butter). Figure 2 shows the action decomposition relevant to this utterance and the

buttering of a cob of corn. In place of the generation relation that is used in plan definitions

for Pollack's SimplePlan and the SharedPlans presented in this paper, the plan sketched in

this figure requires more complex action relationships. A portion of this decomposition

will form the core of the beliefs of a SharedPlan that results in satisfying a condition on a

private SimplePlan. The SharedEnablePlan(S, H, Achieve(Have-Butter)) satisfies the

condition (Have-Butter) needed for S's SimplePlan of SimplePlan(... Achieve(buttered-

corn)).

5.4 Evidence for SharedPlans

To refine our definitions of SharedPlans, we have begun collecting interaction records in

the form of videotapes of agents performing tasks together. 7 Here we present results of

our initial analysis of one interaction record. We videotaped two people in a natural setting

building a piece of furniture (a swing glider); they undertook the task for reasons of their

own (i.e., rather than due to a request from us). They were near each other at all times and

71n collecting our first interaction record we did not inform the agents that they were to collaborate.

127

LA

BBN Systems and Technologies Corporation Report No. 6937

00

400
-a 0

00

0..C

CL I

$10

Corn

1283

Report No. 6937 BBN Systems and Technologies Corporation

could see each other without obstruction. It should also be noted that the individuals knew

each other quite well and were accustomed to working together (on scientific rather than

physical tasks). We will discuss two portions of the tape that provide insight into the
kJ

SharedPlan model because they indicate how agents R and L collaborated in the planning

and acting cycle. Both portions include mistakes in the construction process, each serious

enough for discussion. One mistake required R and L to disassemble a part of the partially

assembled glider.

The first episode of planning concerns the construction of the base of the glider. The

agents, having read all the directions that accompanied the unassembled furniture, begin

with the first sub-task stipulated in the directions. Their task consists of an enablement of

two actions; one action is a GEN-conjoined for each of them to place dowels in each end

of the front and rear rails (the rails and the leg assemblies form a rectangular box-shaped

structure). Each agent must individually also perform the two conjoined actions (in order

to perform GEN-conjoined) of placing a dowel in one side of the front rail and one side of

the rear rail; L will do the left side of the rails and R will do the right side. Their

conjoined action enables a simultaneous action, namely attaching the rails to the leg

assemblies. This action need not require simultaneity (one person could do it all alone), but

perhaps since the agents have decided to work together, they decide to perform the task that

way.

In this episode the agents discuss each part of the task (they do not discuss the whole base

assembly) by announcing the action to be performed ("Place a small dowel in each end of

the front and rear rails."). Some discussion and preparatory actions follow the announced

129

BBN Systems and Technologies Corporation Report No. 6937

action.8 \. The agents identify the parts to be used; they then discuss how to lay them out in

the "right orientation," followed by doing so. Each time one agent offers a suggestion for

what to do next (sometimes suggesting joint action with "let's ...", and sometimes

suggesting action for the other individual as in "you might want to..."). A spoken

response is not always forthcoming. When the other agent agrees, he may simply proceed

with the action, thereby indicating assent by action that is visible to the other agent. The

completion of the GEN-Conjoined action is not accompanied by any sort of channel

checking or announcement of completion by both agents. R indicates completion by saying

"then;" L does so by going onto the next part of the task.

The attachment of the leg assemblies is preceded by almost no discussion of the action. L

simply announces "Oh then uh attach leg assemblies." Then L and R begin attaching the

leg assemblies. Their first attempt meets partial failure after 7 seconds when R's front rail

becomes detached (he mumbles "oops") and ends in complete failure after approximately

20 seconds. The full failure occurs when after attaching the pieces, L and R each attempt to

tap on the structure; the whole thing collapses. In quick succession they each propose what

is wrong with their simultaneous act and how to fix it: L offers "allright, we need to

coordinate," while R offers "oh, actually here's a good thing. If you put the dowel in this

end first then because it just slips on the other end, the dowel in this hole first and..." to

which L responds simultaneously with the end of R's statement "right." They then proceed

to carry out R's suggested course of action.

What can we learn from this brief portion of the interaction record? First, clearly agents

8We have not included a transcript of the videotape because we have not yet determined the proper way to
make one that will indicate what was said, with proper pauses, overlapped speech and the like, what was
done and where the agents looked. All of these behaviors are significant to the interaction record. Where
we quote from the interaction record, we present only the words said and obvious utterance endpoints.
During the workshop we will show these episodes from the tape.

130

Report No. 6937 BBN Systems and Technologies Corporation

make use of the cycle of planning (for whatever one takes planning to be), acting, and

either restarting the cycle, or evaluating an unexpected outcome followed by (re)planning

and acting. It is our belief on the basis of observing the entire session that R and L never

have a plan that covers the entire assembly process. Rather they proceed in steps of

planning a part of the assembly and doing it. They assume this cycle will produce the

correct intermediate outcomes on the basis of the instructions and perhaps on the basis of

beliefs that they will be able to repair any discrepancies.

We also learn that R and L do participate in a collaborative planning process; R and L

decide what a sub-task is and sometimes discuss what one of them should do. There is

sometimes explicit verbal assent and sometimes assent implied by undertaking action.

Dissent, when it occurs, is handled rather indirectly. That is, the agents do not say "no,"

but instead state some proposition that implies their disagreement; they are very facile at

picking up on each other's statements of this sort.

We also can observe that R and L make public, in a variety of ways, their beliefs and

intentions. They often tell each other information about the assembly task and ask

questions about something they believe the other will know. In addition the fact that they

can see each other means they can rely on the other person recognizing visually their

(intentions to do) actions that contribute to the desired outcome.

We can ask some specific questions about the nature of the failure that occurs in the first

episode. On the basis of the SharedPlan model, we would expect that they could have

erred in any one of three ways:

1. having false beliefs of each other's intentions to attach the rails to the leg

131

BBN Systems and Technologies Corporation Report No. 6937

assemblies,

2. having false beliefs about their ability to execute the action required,

3. having false beliefs about time interval in which the action will begin [timing is

critical in simultaneous action].

Judging from the interaction record, we have concluded that only beliefs two and three

actually were held by one of the agents. L's comment about what is wrong indicates that

he believes the error involved beliefs of the third type, while R's suggestion for what to do

indicates an error in the way they are able to perform the overall enablement, i.e. errors in

beliefs of the second type. His suggestion amounts to a different choice of actions to be

performed, in part because the expectations he had about how tightly the parts would fit are

not born out (and he tells L this during the episode).

False beliefs about the nature of relations among actions and the components used in

performing an action play a significant role in the second episode of the interaction. That

episode is quite extended, covering about 10 minutes of the 40 minute process. Early on in

the interaction, R places washers on the 3 1/4" bolts that secure the front and rear rails to

the leg assemblies. He does so out of the common belief that bolts require washers to keep

the bolt head from digging into the wood (of the leg assemblies). This action is in error

because it will later (several minutes later) leave the agents with too few washers for the

rest of the assembly. The issue of where to put washers plagues the agents for the 10

minutes that follow.

That there may be a problem with using washers on the bolts occurs to L. Evidence of this

comes from his interpretation of an ambiguously phrased question from R ("Does it show

in the picture, is there supposed to be a washer?") L understands R to be asking about the

132

Report No. 6937 BBN Systems and Technologies Corporation

washers on the bolts. He immediately answers with a statement that is in fact false, though

neither agent is aware of it at the time: "I'm sure there's a washer under this head." In fact

R was asking about washers in use with nuts inside the rails. Eventually R deduces on the

basis of the use of other washers that they have erroneously placed washers on the bolts....

After more discussion, the agents agree that they must partially disassemble the structure in

order to recover the washers that they need.

R and L's linguistic behavior indicates that they are very reluctant to tamper with their

beliefs about actions once they have been undertaken. For example, when L decides that R

is misplacing a nut (which he first calls a washer), his suggestion of this fact to R is quite

tentative: "Urn, < agent's name, > I'm I'm not sure the washer the the nut goes on the

outside like that." A bit later L also asks about washers since he believes he sees an

inconsistency in R's explanation about washers under the heads of the 2 1/4" bolts for the

gliders straps9 as compared to the washers under the heads of the 3 1/4" bolts for the rails.

Their exchange indicates both the tentativeness of L's tampering and the conclusion that L

finally draws and that R comes to hold as well.

L: How come we have a nut, a nut, a washer under here? Maybe we shouldn't

have put washers there?

R: Where did we have washers?

L: Up here.

R: Oh I think it, well, it told us to. heh.

L: It showed washers on both ends? (said under his breath:) Or are we wrong?

R: I asked you about that. Oh no, we did that wrong. There was no washer under

9As an indication of their confusion, and to the confusion of anyone who views this tape, the agents refer
to the bolts for-the glider straps as nuts; sometimes they correct themselves and other times they do not.

133

BBN Systems and Technologies Corporation Report No. 6937

that end of that nut.

While reluctant to tamper with beliefs about the relations among actions, R and L succeed

in doing so. In the case above, the action of placing a nut under the rail bolts is believed to

enable a condition of the proper state of the entire glider. While in fact the agents never

resolve whether that state should be attained, they give up their belief in the enablement in

favor of belief about necessary enabling states for other actions that have yet to occur

(having washers for the bolts that attach the arm assemblies and back to the base). They do

not at the time of giving up the first belief have a detailed belief about the upcoming

enabling states. They believe there are some, but their beliefs are couched in terms of

needing the washers in the future for some part of the assembly.

5.5 Concluding Comments

We have presented an initial formulation of SharedPlans, and definitions for a small set of

actions involving collaborations among multiple agents. Analysis of exchanges in a

collaborative endeavor of two people corroborates to some extent our stipulation of

(mutual) beliefs in a plan, and the need for the construct of SharedPlan. However, much

additional research remains To provide the basis for systems that can plan collaboratively

with their users requires investigations in three areas: (1) definitions of the kinds of action

relations that play central roles in collaborative activity; (2) an algorithmic description of

collaborative planning; (3) the specification of the conditions under which collaboration will

produce agreed upon common goals. We are focusing on the first of these three areas and

in particular on the problem of specifying additional action relationships and the ways in

which information about them is communicated among the participants in a collaborative

planning process. The relations of causality and enablement (described briefly above) are

134

Report No. 6937 BBN Systems and Technologies Corporation

critical to plans, planning and acting [Geo87b]. Additional relationships enter into the

complex (and still to be analyzed) activities that arise when actions cluster together to form

a test and reaction to it. We plan to make use of the interaction record discussed in this

paper to create definitions of those relations and then test our definitions against behavior in

other videotapes.

13

135

BBN Systems and Technologies Corporation Report No. 6937

Rererences

[A1179] J.F. Allen. A Plan Based-approach to Speech Act Recognition. Technical

Report 131, University of Toronto, Toronto, Canada, 1979.

[A1184] James Allen. Towards a general theory of action and time. Artificial

Intelligence, 23(2):123-144, 1984.

[Bru75] B.C. Bruce. Belief systems and language understanding. Technical Report

2973, Bolt Beranek and Newman Inc., Cambridge, Mass., 1975.

[Geo87a] Michael P. Georgeff. Planning. In Joseph Traub, editor, Annual Review

of Computer Science, Annual Reviews, Inc., Palo Alto, Ca., 1987.

[Geo87b] M.P. Georgeff. Actions, processes and causality. In Reasonings About

Actions and Plans: Proceedings of the 1986 Workshop, pages 99-122, Los

Altos, CA, 1987.

[Go170] A.I. Goldman. A Theory of Human Action. Princeton University Press,

Princeton, NJ 1970.

[GS86] Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and the

structure of discourse. Computational Linguistics, 12(3): 175-204, 1986.

[GS88] B.J.Grosz and C. Sidner. Plans for discourse. In Cohen, Morgan, and

Pollack, editors, Intentions in Communication, MIT Press, Cambridge,

MA, 1988.

[KA86] H.A. Kautz and J.F. Allen. Generalized plan recognition. In Proceedings

136

Report No. 6937 BBN Systems and Technologies Corporation

of AAAI-86, the 5th National Conference on Artificial Intelligence,

American Association of Artificial Intelligence, August 1986.

IKon84] K. Konolige. A Deduction Model of Belief and its Logics. PhD thesis,

Stanford University, 1984.

[Moo85] R.C. Moore. A formal theory of knowledge and action. In J.R. Hobbs and

R.C. Moore, editors, Formal Theories of the Commonsense Word, pages

319-358, Ablex, Norwood, NJ, 1985.

[Mor86] L. Morgenstern. A first order theory of planning, knowledge and action.

In J. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge:

Proceedings of the 1986 Conference, pages 99-114, Los Angeles, CA,

1986.

[NCRF] Nils J. Nilsson, P.R. Cohen, S.J. Rosenschein, and K. Fertig. Intelligent

communicating agents. Personal Communication.

[Po1861 Martha E. Pollack. A model of plan inference that distinguishes between

the beliefs of actors and observers. In Proceedings of the 24th Annual

Meeting of the Association for Computational Linguistics, pages 207-214,

Association for Computational Linguistics, New York, June 1986.

[Ros82] J.S. Rosenschein. Synchronization of multi-agent plans. In Proc. Conf.

Artif. Intell., pages 115-119, Stanford, CA, 1982.

[Sea88] J.R. Searle. Collective intentionality. In Cohen, Morgan, and Pollack,

editors, Intentions in Communication, MIT Press, Cambridge, MA 1988.

[Sid83] C.L. Sidner. What the speaker means: the recognition of speakers' plans

137

BBN Systems and Technologies Corporation Report No. 6937

in discourse. International Journal of Computers and Mathematics, 9(1):7 1-

82, 1983.

[SSG79] D.F. Schmidt, N.S. Sridharan, and J.L. Goodson The plan recognition

problem: an intersection of artificial intelligence and psychology. Artificial

Intelligence, 10:45-83, 1979.

[Wi183] R. Wilensky. Planning and Understanding. Addison-Wesley, Reading,

MA, 1983.

138

Report No. 6937 BBN Systems and Technologies Corporation

6. Domain Modelling for a. Natural Language
Processor,

Ralph M. Weischedel 2

BBN Systems and Technologies Corporation
I-

Abstract
L

In this paper, we discuss the following aspects of natural language
understanding:

• The knowledge representation required

• Critical ontological decisions

" The multi-faceted role of a domain model

" A proposed high-level taxonomy that (we hope) is domain-
independent and language-independent.

We have used a hybrid approach to representation, employing an intensional
logic for the representation of the semantics of an utterance and a taxonomic
language with formal semantics for specification of logical constants and
axioms relating them. We employ a domain model which is a set of axioms
expressed in the taxonomic knowledge representation system.

This combination has proved quite effective in BBN's natural language
understanding and generation system (Janus). The paper lists how Janus
employs the domain model and the limitations experienced in this approach.

1This research was supported by the Advanced Research Projects Agency of the Department of Defense and
was monitored by ONR under Contracts N00014-85-C-0079 and N00014-85-C-0016.
2This brief report represents a total team effort. Significant contributions were made by Damaris Ayuso,
Rusty Bobrow, Ira Haimowitz, Erhard Hinrichs, Thomas Reinhart, Remko Scha, David Stallard, and
Cynthia Whipple. We also wish to acknowledge many discussions with William Mann and Norman
Sondheimer in the early phases of the project.

139)_

BBN Systems and Technologies Corporation Report No. 6937

6.1 Introduction

A domain model, for us, will be the specification of the logical constants of the domain

and of axioms relating them. Though many [11,20] would argue that knowledge

representation is critical to successful language processing, we have found that a domain

model is central to natural language processing. In fact, all components of BBN's Janus

natural language interface (including both the generation subsystem Spokesman and the

understanding subsystem IRUS but not including the morphological analyzer), use the

domain model in a central way.

In Janus, the meaning of an utterance is represented as an expression in an intensional

logic. However, a logic merely prescribes the framework of semantics and of ontology.

The logical constants, that is the constants (functions with no arguments), the other

function symbols, and the predicate symbols, are abstractions without any detailed

commitment to ontology nor to their semantics.

We have used NIKL as a basis for axiomatizing logical constants to explore whether a

language with limited expressive power is adequate for core problems in natural language

processing. Though we have found clear examples that argue for additional expressive

power, they have been rare in our expert system and data base applications. Furthermore,

the graphical editing, browsing, and maintenance facilities of KREME, a knowledge base

editor, have made the task of porting Janus to new domains much easier.

Section 6.2 describes the formalisms chosen for domain modelling; Section 6.3 presents

operators that derive new terms from existing logical constants; Section 6.4 briefly

140

Report No. 6937 BBN Systems and Technologies Corporation

describes the role the domain model plays in Janus; and Section 6.5 briefly summarizes

two attempts at defining a general-purpose domain modeL

6.2 Representation Commitments

To explore the virtue of some particular design decisions, we have made the commitments

that follow.

* Intensional logic for representing the meaning of an utterance.

* The semantics of NIKL[5] to axiomatize logical constants, and therefore as the

knowledge representation of the domain model.

They are decisions for the present; we neither assume that they will be the best for the

foreseeable future, nor are religiously committed to them. Nevertheless, as existing well-

documented representation languages, they have enabled us to focus on formal domain

specification rather than on issues in representation languages.

In choosing NIKL to axiomatize the logical constants, we gain an inference algorithm, the

classifier [181, which is incomplete, but which in practice has proven efficient. A further

benefit in choosing NIKL is the availability of KREME, a sophisticated browsing, editing,

and maintenance environment [1] that has proven effective in a number of projects having

a taxonomic knowledge base. Though NIKL does not have the expressive power of first-

order logic, we have found it adequate for the axioms needed by Janus in building a

natural language interface to two military applications. This is discussed further in Section

6.5.

141

BBN Systems and Technologies Corporation Report No. 6937

A quick review of the advantages of an intensional logic shows

* Both its structure and semantics can be close to that of natural language, leaving

relatively little concern about its representational adequacy.

* Numerous linguistic studies provide semantic analyses that can be drawn upon.

However, its disadvantages include:

* The complexity of logical expressions is great even for relatively straightforward

utterances using Montague grammar [14]. However, by adopting Montague's

logic while rejecting Montague grammar, we have made several inroads into

matching the complexity of the proposition to the complexity of the utterance; see

[2].

* Realtime inference strategies to support definite reference is a challenge for so

rich a logic. However, our hypothesis is that large classes of the linguistic

examples requiring common sense reasoning can be handled using the limited

inference algorithms of NIKL. Arguments supporting this hypothesis appear in

[9, 15] for interpreting nominal compounds, in [3, 4, 19] for common sense

reasoning about modifier attachment and in [20] for foregrounding phenomena in

definite reference.

142

Report No. 6937 BBN Systems and Technologies Corporation

Nevertheless, the hybrid representation approach adopted has its limitations. Given time

and world indices potentially on each logical constant, what is the meaning of typical

relations such as those in Figure 1?

A

(1, oo)

Figure 1: Two Typical Facts Stated in NIKL

In a first-order logic, the normal semantics would be

(V x) (B (x) A A(x))

(V x)(B(x) (3 y)(C (y) A R(x, y))).

However, we need to interpret NIKL structures in light of time and world indices which

can appear on each logical constants. Due to a suggestion by David Stallard, we interpret

the structure in Figure 1 to mean

(V x)(V t)(V w)(B(x)(t,w) A(x)(t, w))
(V x)(V t)(V w)(B(x)(t,w) (y)(c(y)(t,w)A R(x,y)(t, w)))

Though this handles the overwhelming number of logical constants we need to axiomatize,

we have found no way to capture (in NIKL) the semantics of predicates which should

have intensions as arguments; therefore, they are unfortunately specified separately.

143

BBN Systems and Technologies Corporation Report No. 6937

Examples that have arisen in our applications involve changes in a reading on a scale, e.g.,

USS Stark downgraded from CI to C4. Approximately 5% of the vocabulary in our

applications could not be handled with NIKL.

6.3 Some Global Ontological Decisions

Any concept name or role name in the network will be a logical constant. We use concepts

only to represent sets of entities indexed by time and world. Roles are used only to

represent sets of pairs of entities. Given that the axioms in our networks represent

universal statements, several representational issues arise due to the nature of natural

language semantics and of knowledge.

Suppose CATS and MICE are concepts in our network representing all cats and mice

respectively. Following Scha 116], the cats will be represented as a term in the logic

(the X POWER (CATS)).

We will not enshrine that particular set of cats in the network, since only logical constants

will appear in our networks.

Following Carlson's linguistic analysis [6,7] we will distinguish kinds, samples, and

generics. Sometimes generic properties are associated with a kind, but not with every

instance: as in Cats are ferocious. Here we assume there is a kind

(KIND CATS)

144

Report No. 6937 BBN Systems and Technologies Corporation

about which the property of ferociousness is asserted; the kind corresponding to CATS

will not be in the network, since we do not choose to make the kind a logical constant. At

times, an indefinitely specified set must be represented, as in Mice were eaten. An

indefinitely specified set will be denoted by

(SAMPLE x MICE)

but the corresponding set will not be enshrined in the network.

Generic statements such as Cats eat mice are often encoded in a semantic network or

frame system. However, representing the structure as in Figure 2 would not give the

desired generic meaning, but rather would mean (ignoring time and world) that

(V x)(CATS (x) 3 y)(Mice (y)A Ea (x, y))).

Figure 2: Illustration Distinguishing NIKL Networks from

other Semantic Nets

Again, following Carlson's linguistic analysis, we would have a generic statement about

the kind corresponding to cats, that these eat indefinitely specified sets of mice. Our

formal representation (ignoring tense for simplicity) is

(GENERIC(LAMBDA(x)EAT(x,(SAMPLE y MICE)))) [KIND CATS].

145

BBN Systems and Technologies Corporation Report No. 6937

An old notion proposed for definitions is the QUA link [10] for defining those entities that

are exactly the fillers of a particular slot. USC/ISI [13] has proposed a similar mechanism

for defining pilot as the filler of flying events. Nevertheless, QUA actually defines

(LAMBDA(x)(3 y)(FLYING - EVENT(y) A ACTOR(y, x))

a predicate defining the set of items that have ever been the actor in a flight. Rather, one

wants, we believe, a predicate defining the set of items that generically are the actors in a

flight, i.e.,

(LAMBDA (x)(GENERIC (LAMBDA(x)(3 y)(FLYING - EVENT(y) A ACTOR(y, x))))).

6.4 Use of Domain Model in Janus

The domain model serves several purposes in Janus. First, in defining the logical

constants of our semantic representation language, it provides the logical constants that

lexical items map to. For instance, the lexical entry for deploy would state that it maps

into an expression such as

(AND (DEPLOYMENT x) (DEPLOYMENT.LOCATION x y)),

where the two underlined items are a concept and role, respectively, in the domain model.

The expression may be arbitrarily complex, allowing for anything from a one-to-one

correspondence of logical constants and word senses to a complex decomposition of the

word sense into primitives.

146

• liii I III 11.01 I I I

Report No. 6937 BBN Systems and Technologies Corporation

Second, the domain model provides the types (or sorts of a sorted logic) that form the

primitives for selection restrictions. In the case of deploy, a MILITARY-UNIT can be the

logical subject, and the object of a phrase marked by to must be a location.

Third, we define a mapping from each logical constant to the appropriate functionality in

the data base, expert system, simulation program, etc. For a constant HARPOON-

CAPABLE, that mapping would select those records of the unit-characteristics table with a

"Y" in the HARP field.

The domain model has been used in Janus

* To interpret the meaning of have and of in context

* To filter possible modifier attachments while parsing

• To infer omitted prepositions when an input has a telegraphic style

* To infer lexical semantics from example utterances

• To organize, guide, and assist linguistic knowledge acquisition.

These topics are addressed elsewhere [2].

147

BBN Systems and Technologies Corporation Report No. 6937

6.5 Experience with a General-Purpose Domain Model

One of the most serious impediments to widespread use of natural language processing

technology is the effort (and therefore cost) involved in defining the knowledge needed by

the natural language processor (NLP) to interpret/generate language for the given

application. In Janus, since the domain model plays a central role, the domain model is

most critical.

Were it possible to have a general purpose domain model which one extended and edited -- -

for a new domain/application, then the effort involved would be greatly cut. We

investigated two approaches to building a general purpose domain model, which are

covered in the following subsections.

6.5.1 Basic Vocabulary

In the Longman Dictionary of Contemporary English [12] (LDOCE) approximately 56,000

words are defined in terms of a base vocabulary of roughly 2,000 items.3 We estimate

that about 20,000 concepts and roles should be defined corresponding to the 2,000 multi-

way ambiguous words.

The appeal, of course, is that if these basic notions were sufficient to define 56,000

words, they are generally applicable, providing a candidate for general purpose primitives.

3Though the authors try to stay within the base vocabulary, exceptions do arise such as diagrams and proper
nouns, e.g., Pennsylvania and Catholic Church.

148

Report No. 6937 BBN Systems and Technologies Corporation

The course of action we followed was to build a KREME hierarchy for all of the

definitions of approximately 200 items from the base vocabulary using the definitions of

those vocabulary items themselves in the dictionary. In this attempt, we encountered the

following difficulties:

- Definitions of the base vocabulary often involved circularity.

* Definitions included assertional information and/or knowledge appropriate in

defeasible reasoning, which are not fully supported by NIKL. The first definition

of cat is "a small four-legged animal with soft fur and sharp claws, often kept as a

pet or for catching mice or rats."

* Multiple views and/or vague definitions and usage arose in LDOCE. For

instance, the second definition of cat (p. 150) is "an animal related to this such as

the lion or tiger" (italics added). Such a vague definition helped us little in

axiomatizing the notion.

It was thus clear that much careful thought would be needed to axiomatize by hand the

LDOCE base vocabulary if general-purpose primitives were to result. Consequently, it

seemed most appropriate to define general abstractions which would set an ontological

style, then to use the more concrete primitives of LDOCE within the style set by the hand-

crafted abstractions. A more detailed analysis of our experience is presented in Chapter 7.

149

L

BB3N Systems and Technologies Corporation Report No. 6937

6.5.3 Abstractions

An alternative course of action is to focus on the highest level of abstractions since they

provide a style in which more concrete, general-purpose notions fit. In this sense, it has

goals similar to the USCIISI "upper structure" [131, which seems tied to systemic

linguistics rather than to a more general ontological style.

All of our concept abstractions divide into either a PROCESS, i.e., that which changes

things, or an OBJECT, that which can change, or a DESCRIPTION, which is a property.

A PROCESS normally has roles associated since we reify processes. Though reifying

processes could be attributed to the limitations of the formalism, Davidson [5] has argued

for reification on semantic grounds. Some roles are thematic, analogous to notions in [8,

17], e.g., AGENT, PATIENT, BENEFICIARY, INSTRUMENT; and some are not

linguistically motivated, e.g., STATE.BEFORE, and STATE.AFTER. Actions therefore

come under the PROCESS hierarchy, as do events (actions with a specific time of

occurrence). Unfortunately, it is impossible in this short note to go through all of the 45

descendants of PROCESS, nor all 50 descendants of DESCRIPTION, nor all of the 38

roles, nor all 50 descendants of OBJECT, created thus far.

6.6 Conclusions

Our conclusions regarding the hybrid representation approach of intensional logic plus

NIKL-based axioms to define logical constants are based on three kinds of efforts:

150

m M m- II. * mlE 1mm u1 im * I - I ii I

Report No. 6937 BBN Systems and Technologies Corporation

* Bringing Janus up on two large expert system and data base applications within

DARPA's Fleet Command Center Battle Management Program. The combined

lexicon in the effort is over 6,000 words (not counting morphological variations).

* The efforts synopsized here towards a general purpose domain model.

* Experience in developing a set of acquisition tools integrated with the domain

model acquisition and maintenance facility (KREME).

First, a taxonomic language with a formal semantics can supplement a higher order logic in

support of efficient, limited inferences needed in a natural language processor. Based on

our experience and that of others, the axioms and limited inference algorithms can be used

for classes of anaphora resolution, interpretation of have and of, finding omitted relations

in novel nominal compounds, and selecting modifier attachment based on selection

restrictions.

Second, an intensional logic can supplement a taxonomic language in trying to define word

senses formally. Our effort with LDOCE definitions showed how little support is

provided for defining word senses in a taxonomic language. A positive contribution of

intensional logic is the ability to distinguish universal statements from generic ones from

existential ones, definite sets from unspecified ones, and necessary and sufficient

information from assertional information.

Third, the hybridization of axioms for taxonomic knowledge with an intensional logic does

not allow us to represent all that we would like to, but does provide a very effective

151

BBN Systems and Technologies Corporation Report No. 6937

engineering approach. Out of several thousand lexical entries, only a handful represented

concepts inappropriate for the formal semantics of NIKL.

Fourth, we hypothesize that a large general purpose domain model is feasible and highly

desirable. Our experience has not proved that hypothesis, for the work is still young.

There are aspects that could properly be termed domain modelling which we have not

addressed either in this paper or in Janus. Procedural knowledge about events sequences,

goals, and plans is an area of research which we do not believe to be adequately

represented via NIKL.

REFERENCES

[1] Abrett, G. and Burstein, M. The KREME knowledge editing environment. Int. J.

Man-Machine Studies 27:103-126, 1987.

[2] Ayuso, D.M., Weischedel, R.M., Bobrow, R.J. Semantic Interpretation in the Janus

Understanding and Generation System. 1988.

[3] Bobrow, R. and Webber, B. PSI-KLONE: Parsing and Semantic Interpretation in

the BBN Natural Language Understanding System. In Proceedings of the 1980

Conference of the Canadian Society for Computational Studies of Intelligence.

CSCSI/SCEIO, May, 1980.

152

Report No. 6937 BBN Systems. and Technologies Corporation

[4] Bobrow, R. and Webber, B. Knowledge Representation for Syntactic/Semantic

Processing. In Proceedings of the National Conference on Artificial Intelligence. AAAI,

August, 1980.

[51 Brachman, R.J. and Schmolze, J.G. An Overview of the KL-ONE Knowledge

Representation System. Cognitive Science 9(2), April, 1985.

[6] Carlson, Gregory. Reference to Kinds in English. PhD thesis, University of

Massachusetts, 1977.

[7] Carlson, G. Reference to Kinds in English. Garland Press, New York, 1979.

[8] Fillmore, Charles J. The Case for Case. In Bach, Emmon, & Harms, Robert T.

(editors), Universals in Linguistic Theory, chapter 1, pages 1-88. Holt, Rhinehart, &

Winston, New York, NY, 1968.

[9] Finin, T.W. The Semantic Interpretation of Nominal Compounds. In Proceedings of

The First Annual National Conference on Artificial Intelligence, pages 310-312. The

American Association for Artificial Intelligence, The American Association for Artificial

Intelligence, August, 1980.

[10] Freeman, M. The QUA Link. In Schmolze, J.G. and Brachman R.J. (editors),

Proceedings of the 1981 KL-ONE Workshop, pages 55-65. Bolt Beranek and Newman

Inc., 1982.

153

BBN Systems and Technologies Corporation Report No. 6937

[11] Hobbs, J.R. and Martin, P. Local Pragmatics. In John McDermott (editor),

Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages

520-523. International Joint Conference on Artificial Intelligence, Morgan Kaufmann

Publishers, Inc., August, 1987.

[12] Longman Dictionary of Contemporary English. Essex, England, 1987.

[13] Mann, W.C., Arens, Y., Matthiessen, C., Naberschnig, S., and Sondheimer, N.K.

Janus Abstraction Structure -- Draft 2. Technical Report, USC/Information Sciences

Institute, 1985.

[14] Montague, Richard. The Proper Treatment of Quantification in Ordinary English. In

J. Hintikka, J. Moravcsik and P. Suppes (editors), Approaches to Natural Language,

pages 221-242. Reidel, Dordrecht, 1973.

[15] Planes, D. Ayuso. The Logical Interpretation of Noun Compounds. Master's

thesis, Massachusetts Institute of Technology, June, 1985.

[16] Scha, R. and Stallard, D. Multi-level Plurals and Distributivity. In the Proceedings

of the 26th Annual Meeting of the Association for Computational Linguistics, pages 17-

24. Association for Computational Linguistics, June, 1988.

[17] Schank, R.C. The conceptual analysis of natural language. In Randall Rustin

(editor), Natural Language Processing, pages 291-309. Algorithmics Press, New York,

1973.

154

Report No. 6937 BBN Systems and Technologies Corporation

[181 Schmolze, J.G., Lipkis, T.A. Classification in the KL-ONE Knowledge

Representation System. In Proceedings of the Eighth International Joint Conference on

Artificial Intelligence. 1983.

[19] Sondheimer, N.K., Weischedel, R.M., and Bobrow, R.J. Semantic Interpretation

Using KL-ONE. In Proceedings of COLING-84 and the 22nd Annual Meeting of the

Association for Computational Linguistics, pages 101-107. Association for

Computational Linguistics, Stanford, CA, July, 1984.

[20] Weischedel, R.M. Knowledge Representation and Natural Language Processing.

Proceedings of the IEEE 74(7):905-920, July, 1986.

155

BBN Systems and Technologies Corporation Report No. 6937

156

Report No. 6937 BBN Systems and Technologies Corporation

7. Summary of Conclusions from
the Longman's Taxonomy Experiment

T. Reinhardt C. Whipple

BBN Systems and Technologies Corporation

7.1 Overview of Experiment

As part of the continuing research into knowledge representation schemes for natural

language processing, a subset of primitives was chosen from the approximately two-

thousand primitive concepts listed in the back of the Longman Dictionary of Contemporary

English [3]. The hope was that by using existing knowledge representation tools,

specifically KREME [1, 2], a domain-independent model which would provide a core set

of concepts that might be used by multiple domain-specific applications.

7.2 Method

Given the size and complexity of the domain model, we attempted a top-down

approach, one that sought to focus upon the organizational as opposed to the

definitional aspects of the task. Initially, five primitives were chosen: object, time,

space, idea and state. Since each had numerous definitions associated with it, the

symbolic names were suffixed with tags indicating the part of speech and definition

157

p-

BBN Systems and Technologies Corporation Report No. 6937

used. For instance, Thing[nl], indicated that the first definition of Thing as a noun

was chosen.

KREME provides a general facility for constructing and maintaining taxonomies.

Specifically, KREME is a flexible "knowledge representation, editing and modelling

environment" that

Enables designers to define Concepts and Roles. Concepts are unary

relations that represent organizational or definitional entities. Roles are

restricted binary relations that map domain concepts to range concepts;

Organizes binary and unary relations into subsumption hierarchies, i.e.,

partial orderings induced by a subsumption operator; and,

Provides an interactive editing facility for creating, deleting and modifying

nodes within these networks.

Concepts represent definitions, in the case of actual Longman's primitives, or

organizational markers, in the case of "synthetic" nodes. unit[n2] denotes the second

noun definition of unit - a quantity or amount used as a standard of measurement.

Concepts without "[I"'s suffix denote synthetic concepts that were added to organize

and root sublattices: primitive.unit, for instance, is the synthetic parent node for all

metric and avoirdupois units of measurement. Roles were used to describe the

functional characteristics of a node. For instance, unit.of is a role whose domain is

158

Report No. 6937 BBN Systems and Technologies Corporation

thing and whose range is unit[n2]. For example, a physical object may have a

weight expressed in pounds - which is a subclass of unit[n2].

As definitions were added, they were examined for their primitiveness. If a definition

used terms that were Longman's primitives, they were assimilated as well. For

example, Longmans defines Thing[n4] as a subject; matter. Subject, it turns out, is

a primitive comprised of seven definitions and matter nine. Two definitions of subject

appeared germane:

Subject[nlI [(of)] the thing that is dealt with or represented in a piece of writing,

work of art, etc., and,

Subject[n2] something being talked about or considered.

And two definitions for matter appeared to apply:

Matter[nil a subject to which one gives attention; situation or affair, and,

Matter[n4] a subject itself as opposed to the form in which it is spoken or written

about.

In this example, note that an indirect circularity arises in using the term "subject" in the

definition of Matter since both "subject" and "matter" are expressed as terms in the

definition of Thing[n4]. In general, such definitional circularity was unavoidable

since a majority of the Longman definitions were circular. No attempt was made to

159

BBN Systems and Technologies Corporation Report No. 6937

"flatten" out such definitions since it was the intent of the project to faithfully rely upon

the Longman taxonomy.

Nevertheless, some effort was made to keep the resulting taxonomy small, but

representative. Hence, the recursive inclusion of terms used in definitions was kept to

a manageable minimum. The current taxonomy comprises only two hundred and

twenty concepts, i.e., unary relations, and thirty roles, i.e., restricted binary relations.

In addition to the Longman primitives, "synthetic" nodes were added to enhance

readability and provide some structure to the lattice.

In one instance we attempted to extend the sublattice rooted at unit[n2], amount or

quantity used as a standard of measurement, to leaf nodes. In this case, we took the

taxonomy out to specific units of measurement in both the metric and avoirdupois

systems.

7.3 Results

Our results bear out the adage that "the more specific the taxonomy, the more useful

and accessible its descriptive power." The more specific a knowledge representation

model is, the more likely that it will provide a sufficiently directed core of concepts for

a given application. Longman's selection of primitives includes a potentially viable

subset of definitions which will provide the foundation for such a model.

160

Report No. 6937 BBN Systems and Technologies Corporation

7.3.1 The Limits of Logic-Based Representation

KREME is organized around a notion of classification in the sense that a unary or

binary relation may be uniquely classified in a lattice of other such relations. 1 Such

classification is a powerful tool in domains that are amenable to partitioning by some

partial ordering operator - a subsumes relation, for example.

In addition, KREME classification provides an elegant foundation upon which to

introduce higher level functionalities - such as disjunction and equivalence operators

and inverse relations. These wield "big descriptive sticks" so long as some underlying

assumptions remain true: That the universe of discourse is finite and enumerable; that

all relations between entities are bounded and binary; and, that the elements of

discourse are definitional entities as opposed to assertions.

In the current experiment, though, classification brought little computational or

descriptive leverage to bear on the problem of organizing such general knowledge

other than providing a formal notion of hierarchy. Disjointness operations, for

instance, proved (at least thus far) difficult to maintain until we approached leaf nodes.

Consider the following example, whose complete sublattice is illustrated in Figure 1,

where disjointness was applied.

IA semi-lattice, actually, since not all nodes are defaultly terminated by an encompassing "most specific

node."

161

BBN Systems and Technologies Corporation Report No. 6937

Frequently, Longmans defined more complex units of measurement in terms of their

relation to more primitive "leaf nodes:" Rate[nl] is defined as a quantity such as

value, cost or speed, measured by its relation to some other amount, which is a

definition in terms of terminal concepts that lacks a certain functional capacity; it does

not describe the computation necessary to compute a rate as measured in compound

units such as unit[n2] per unit.of.time.

In earlier formulations (see Figure 1), units.of.time were subsumed by

metric.unit and avoirdupois[nl] in an attempt to capture the fact that both systems

of measurement incorporated units.of.time in calculations of rate, etc. This led to a

problem where metric.unit and avoirdupois[nl] could no longer be maintained as

conceptually disjoint.

A cleaner representation resulted from moving units.of.time to the same level as

avoirdupois[nll and metric.units, and declaring them all disjoint, see Figure 2.

But, we still needed to account for "compound descriptions," i.e., units of

measurement that are composed of two or more primitive units, such as "miles per

hour." The synthetic nodes, compound.unit and primitive.unit, were required in

order to represent concepts such as "miles per hour" which is a functional relationship

between two disjoint concepts.

In summary, disjunction assertions were attempted at various points in the lattice. In

the case of disjointnesses on Longman's primitive concepts, though, most were

abandoned as sibling nodes were added because of unforseen relations between

pairwise siblings, as in the case illustrated in Figure 1. A possible explanation for this

might be that all concepts converge in the limit; hence disjointness is at or very near the

162

S-.~PiU I~P ill " 7

Report No. 6937 BBN Systems and Technologies Corporation

level of terminals, i.e., leaves. Finally, disjointness seemed easier to maintain on

synthetic nodes - but this is to be expected since these nodes were relatively linear

(i.e., lacked the circularity of Longman's definitions) and were created to fill functional

voids and provide descriptive structure to the overall lattice.

7.3.2 Synonyms, Aliases

Longman's primitives include terms that are synonyms or aliases. An instance that

was left unexplored was the inclusion of the Imperial system. In that case, either some

labelling scheme might have been employed to textually distinguish imperial from

avoirdupois units of the same name or the KREME synonym facility would have had

to have been augmented to provide the desired functionality.

KREME, as it presently stands, treats synonyms as non-primitive specializations of a

concept. For instance, to define node C' as a synonym for C is to say that C ' is a

non-primitive specialization of C.

Although largely untested, it appears that this scheme is plausible. Unfortunately, it

does not address the question of aliases, such as Imperial versus metlic or avoirdupois

ton. Of course, another interpretation is that the defintion could be sufficiently

"gutted" to a measure of weight -- see Figure 2, as in the the case of ton[n1]. In

this case it's encumbent upon the process driving the taxonomy to establish the context

of the reply.

163

BBN Systems and Technologies Corporation Report No. 6937

__ once tI h i ",ar- v I-Il- l i*' T 4 r, e' " PrII vi. i rII I I II

I ,I AT - . 111

FRIIT/;WNTTZD M I. I-I :m-Jtt NIVU.'1 __________________-

I-NCrNI KI L-,RM 1 1 GA I IALNCIIIE N1L[NI EMI

- _ -..

M, .lNT ' UlJ I: TI¢ ,Ni- z I n ' N, - L711 1

I .-.. I" -- '---- "" -.--- - ,

:-r r-I TIv[Ur4JTEN2) 3:A~~E Jr*lT[j:)

DTi' UoNT :,S HVLIIFLUPJLIffl. ! as

i NI" ,',W '1MTI] .NT S L.' I 'It C es-- M't- I P LNI, .Iv "' ,I,,

--F _ _.__ --I_ _ -- _ _ '_._ , _.__-_-__-

Figure 1: Sublattice depicting the relationship between
units of measurement in both the avoirdupois and metric
systems. Note that compound and primitive units of
measurement are disjoint, but assertions about the
disjointness of metric.unit and avoirdupois[nl] had to
be retracted at units.of.time.

164

Report No. 6937 BBN Systems and Technologies Corporation

PRMII I- rp.; 1-. 1W-,ZT [IC

If 5
I TFT;T; --

-~ , I

Fiur 2: Edte sultc frR Fiur 1aoe Note

tha comoud~ni an -mtv~nia ela

aE irdpisn] mercui an.) un Eits~otJJar

now aserte to be disjoint

LINT T~IF .165

BBN Systems and Technologies Corporation Report No. 6937

7.3.3 Definitional Weaknesses

A major problem with trying to strictly adhere to Longman's set of primitives is the

definitional weaknesses of the primitives. Consider the definition of matter[n3] as

the physical material of which everything that we can see or touch is made, as opposed

to thought or mind; solids, liquids and gases. Note that this definition is weak in the

sense that it is bifurcated, i.e., it consists of two definitions: the physical material of

which everything that we can see or touch is made, as opposed to thought or mind; and

solids, liquids or gases. Such definitions appear repeatedly throughout the dictionary.

It was felt that stronger definitions comprised of singular statements would have gone

far in alleviating confusion and ambiguity.

7.3.4 Using Roles More Effectively

The current taxonomy is "concept heavy" and might be improved by more effective use

of roles, i.e., restricted binary relations, especially in determining usage. Consider,

for instance, the definition of State[nhI] as (of) a condition in which a person or thing

is; a way of being,feeling, or thinking considered with regard to its most important or

noticable quality. Attached to the concept, State[nl], might be the role, state.of,

which maps from its domain, (v person[n]; thing) to the range, condition[nl]

- a state of being or existence.

A potential problem with this approach is the lack of disjunction operators in KREME.

Assuming that the classifier could represent disjunction as a synthetic node whose

generalizations are the disjoins, we are still faced with the problem of exhaustive

166

Report No. 6937 BBN Systems and Technologies Corporation

search over an inflated network. In the case of the "state of the state," for instance,

this might prove expensive.

Similiar problems arise with the transitive verb, to state[vl] - to say, express, or

put into words, esp. formally. Here, the problem is worse since we have an ill-

specified domain and a range that is the union of written and spoken words.

Notwithstanding these problems, is the issue of how to capture the notion of esp.

formally as it occurs in the definition.

7.3.5 Idiosyncratic Usage

That Longmans' is an English and not American dictionary is important. Clearly

numerous idiosyncracies arise, consider the definition of meal, for instance: an

amount of food eaten at one time, usu. consisting of tyo or more dishes. Consider

now its derogatory usage: make a meal of to give (something) more effort,

consideration, or time than it deserves. And, of course, there are countless others.

Besides word differences, of course, usage must be taken into account. For instance,

one can take a bath only in American English whereas one will have a bath in British

English.

167

BBN Systems and Technologies Corporation Report No. 6937

7.3.6 Heterarchies vs. Hierarchies

All classification schemes display a degree of arbitrariness. The relationship between

two nodes in one hierarchy might be completely inappropriate in another hierarchy. In

reality, hierarchies are secondary revisions, attempted explanations in retrospect, of

essentially heterarchical structures of human perception. How (and it's an open

question as to whether) human beings classify depends upon their current viewpoint or

perspective. Consider that a botonist might classify plants differently than a gardener,

although both are speaking about the same entity.

Should the current experiment be extended to attempt to include a complete (in any

sense) collection of primitives, or to handle colloquial or idiosyncratic usage, the

problem of the essentially heterarchical nature of human experience might have to be

taken into account.

7.3.7 Less Complex Interrelations

Pushing aside the issue of heterarchies, and momentarily assuming that common sense

and practical linguistic knowledge could be represented hierarchically, we're still mired

in the semantics of links in such networks. In other words, we'll assume that one

could meaningfully construct concepts as unary logical entities and maintain that their

relationships are such that they form a partial ordering, we are still stuck with the

problem of the semantics of a link: what does it mean to say that C, is above Ci in a

particular network? Clearly the ISA semantics of Kreme and the KL family of

languages is insufficient. Often we need to express "part whole," "one to many" and

168

Report No. 6937 BBN Systems and Technologies Corporation

"many to one" relationships. KREME semantics lacks the facility for expressing such

relationships directly.

7.3.8 Definitional vs. Assertional Knowledge

It's likely an open question as to how much of our knowledge of the world is strictly

definitional and therefore reducible to a classification problem and how much is

assertional which certainly isn't classified in the same sense.

That KREME doesn't distinguish between "definitional" entities and assertions only

exacerbates this problem. Consider person[nl] - a human being considered as

having a character of his or her own, or as being different from all others. Clearly the

iU1 first part of the definition, a human being (...] is definitional where the remaining

definition is problematic. A potential solution is the ability to create individual

instances of a particular class. In this case, perhaps, such assertional knowledge can

m be used in an active capacity, e.g., to ensure that two individuals are in fact different.

In the present experiment, however, this avenue remained unexplored.

7.4 Final Commentary

One reason that Longman's works as a dictionary of English for non-English speaking

people is that its audience is familiar with some natural language. They might not

speak English but they speak some natural language and not LISP, for example.

169

BBN Systems and Technologies Corporation Report No. 6937

Human languages exploit the kinds of ambiguities that classification systems, at least

classification systems based upon formal logic, seek to avoid. Circular definitions, for

instance, can be correctly interpreted by humans and the problem of strict linear

interpretations do not arise as they do in our formal hierarchy.

The most promising subset of primitives are the more concrete, terminal concepts, i.e.,

those concepts most frequently used to describe the world at large. Re-building thc

hierarchy from the bottom up with the freedom to create synthetic concepts not

restricted to Longman's primitives might result in a more descriptively adequate and

perspicuous model. The feeling persists, however, that a general domain-independent

model built on Longman's selection of primitives is at once too general and too

specific. More promising might be to focus on modelling more restricted taxonomies

of specific branches of knowledge, for instance a domain-independent biological

domain model.

References

[I] Abrett, G., Burstein, M., Gunshenan, J., and Polanyi, L. KREME: A User's

Introduction. Technical Report 6508, Bolt Beranek and Newman Inc., 1987.

[21 Abrett, G. and Burstein, M. The BBN Knowledge Acquisition Project: Phase I

Final Report, Functional Description; Test Plan. Technical Report 6543, Bolt

Beranek and Newman Inc., 1987.

170

Report No. 6937 BBN Systems and Technologies Corporation

[3] Longman Dictionary of Contemporary English. Longman Group U.K. Limited,

Longman House, Burnt Mill, Harlow, Essex, CM20 2JE, England, 1987.

171

BBN Systems and Technologies Corporation Report No. 6937

172

Report No. 6937 BBN Systems and Technologies Corporation

8. Presentations and Publications

8.1 List of Presentations

B. Goodman, "Communication and Miscommunication," Harvard University, Cambridge,

Ma., April 1985.

L
B. Goodman, "Repairing Reference Identification Failures by Relaxation," Association of

Computational Linguistics, Annual Meeting, Chicago, I1., July 1985.

B. Goodman., "Micommunication and Plan Recognition," User Modelling Workshop,

Maria Laach, West Germany, August 1986.

B. Goodman, "Reference and Reference Failure," Theoretical Issues in Natural Language

Processing III (TINLAP3), New Mexico State University, Las Cruces, New Mexico,

January 1987.

B. Goodman and D. Litman, "Aiding Design with Constructive Plan Recognition," AAAI

Workshop on Plan Recognition, St. Paul, Mn., August 1988.

A. Haas, "The Case for Domain-Specific Frame Axioms," Workshop on Logical

Approaches to the Frame Problem, University of Kansas, University of Kansas, April

1987.

173

II

BBN Systems and Technologies Corporation Report No. 6937

E. Hinrichs, "A Compositional Semantics for NP Reference and Aktionsarten," West

Coast Conference on Formal Linguistics, March 1986.

dm

E. Hinrichs and L. Polanyi, "Pointing the Way: A Unified Treatment of Referential

Gesture in Interactive Discourse," at the 22nd Annual Meeting of the Chicago Linguistic

Society, April 17-19, 1986.

E. Hinrichs, "A Compositional Semantics for Directional Modifiers in English - Locative

Case Reopened," at the 11 th International Conference on Computational Linguistics,

University of Bonn, August 25-29, 1986.

E. Hinrichs, "Pointing, Language and the Visual World: Towards Multimodal Input and

Output for Natural Language Dialog Systems," Panel on Pointing, Language and the Visual

World, 10th International Joint Conference on Artificial Intelligence, Milan, Italy, August

1987.

L. Polanyi, "The Dynamic Discourse Model," Linguistics Department, UCLA, Los

Angeles, Ca., March 1985.

L. Polanyi, "Discourse Analysis with the DDM," Psychology Department, Stanford

University, Stanford, Ca., April 1985.

L. Polanyi, "A Theory of Discourse Structure and Discourse Coherence," Chicago

Linguistics Society, 21st Annual Meeting, April 1985.

174

L :
Report No. 6937 BBN Systems and Technologies Corporation

L. Polanyi, "Modelling Natural Language Discourse," Cognitive Science Seminar, SUNY

Buffalo, Buffalo, N.Y., May 1985.

L. Polanyi, "Discontinuous Constituents in Discourse," Conference on Discontinuous

Constituents, University of Chicago, Chicago, II., July 1985.

L. Polanyi and R. Scha, "The Dynamic Discourse Model: A Formal Approach to

Discourse Segmentation," Association for Computational Linguistics, Annual Meeting,

Chicago, July 1985.

L. Polanyi, "Modelling the Linguistic Structure of Discourse," Invited Workshop,

Linguistics Institute of the Linguistics Society of America, Georgetown University,

0 Washington, D.C., July 1985.

L. Polanyi, "Discourse Analysis from a Linguistic Point of View," Boston Interaction

Research Group, January 1986.

L. Polanyi, "A Linguistic Approach to Discourse Analysis," Massachusetts

Interdisciplinary Discourse Analysis Seminar, February 1986.

L. Polanyi, "A Formal Model of Discourse Structure," 2nd Cognitive Science Seminar, Tel

Aviv University, Tel Aviv, Israel, April 1986.

L. Polanyi, "Discourse Syntax, Discourse Semantics, Discourse Semiotics: The Case of

the Discourse Pivot," Cognitive Science Series, University of Buffalo, Buffalo, N.Y.,

April 1986.

175

I.1

BBN Systems and Technologies Corporation Report No. 6937

L. Polanyi, "Narrative Organization and Disorganization, Workshop Symposium on the

Acquisition of Temporal Structures in Discourse, University of Chicago, Chicago, II.,

April 1986.

L. Polanyi, "Pointing and Language," Workshop on Integration of Natural Language and

Non-Verbal Information, Milan, Italy, August 1987.

R. Scha, "The Role of Intonation in Marking Discourse Structure," IEEE Workshop of

Speech Recognition, Harriman, N.Y., December 1985.

J. Schmolze, "On Representing Some Everyday Phenomena for Planning Purposes,"

University of Massachusetts, Amherst, Ma., May 1985.

J. Schmolze, "Physics for Robots," Brandeis University, Waltham, Ma., March 1986.

J. Schmolze, "Semantics for NIKL," MIT Workshop on Terminalogical Languages, MIT,

Cambridge, Ma., July 1986.

J. Schmolze, "Physics for Robots," Conference of the American Association for Artificial

Intelligence, Philadelphia, Pa., August 1986.

C. Sidner, "Issues in Pragmatics: Plan Recogntion and Discourse Theory," TANLU

Workshop, May 1985.

176

Report No. 6937 BBN Systems and Technologies Corporation

C. Sidner, "Discourse Structure and the Proper Treatment of Interruptions," International

Joint Conference on Artificial Intelligence, Los Angeles, Ca., August 1985.

C. Sidner, "Al, Computational Linguistics and Discourse Theory," Massachusetts

Interdisciplinary Discourse Analysis Seminar, March 1986.

C. Sidner, "Modelling Discourse Structure: The Role of Purpose in Discourse," Sixth

Annual Canadian Al Conference, Montreal, Canada, May 1986.

t C. Sidner (with B. Grosz), "Plans in Discourse," SDF Benchmark Series in Computational

Linguistics III, Plans and Intentions in Communication and Discourse, Monterey, Ca.,

March 1987.

C. Sidner, "Plans in Discourse," BBN Labs, Cambridge, Ma., April 1987.

C. Sidner, "The Discourse Structure Theory," Linguistics Institute Seminar on Discourse,

Stanford University, Stanford, Ca., July 1987.

C. Sidner and B. Grosz, "Plans for Discourse," Al Seminars Series, BBN Laboratories

Inc., Cambridge, Ma., January, 1988.

N. S. Sridharan, Panel on User Modeling, Ninth International Joint Conference on

Artifical Intelligence, Los Angeles, Ca., August 1985.

N. S. Sridharan, Panel on the Role of Al in Design, 1985 International Conference on

Computer Design, Rye, N.Y., October 1985.

177

BBN Systems and Technologies Corporation Report No. 6937

N. S. Sridharan, Workshop on Distributed Artificial Intelligence, Sea Ranch, Ca.,

December 1985.

N. S. Sridharan, Computer Science Colloquium, University of Pennsylvania,

Philadelphia, Pa., January 1986.

N. S. Sridharan, Computer Science Colloquium, Northeastern University, Boston, Ma.,

February 1986.

N. S. Sridharan, "Semi-Applicative Programming," BBN AI Seminar Series, January

1986.

N. S. Sridharan, Workshop on Future Directions in Computing, sponsored by the Army

Research Office, Seabrook Island, S.C., May 1986.

N. S. Sridharan, Workshop on Artificial Intelligence, sponsored by Indian Ministry of

Defense, Bangalore, India, June 1986.

M. Vilain, "The Restricted Language Architecture of a Hybrid Representation System,"

Ninth International Joint Conference on Artifical Intelligence, Los Angeles, Ca., August

1985.

M. Vilain, "KL-Two and Hybrid Knowledge Representation, University 'f Rochester,

Rochester, N.Y., November 1985.

178

Report No. 6937 BBN Systems and Technologies Corporation

M. Vilain, "Abstraction and Classification in a Hybrid Representation System, MIT A.I.

Laboratory, MIT, Cambridge, Ma., March 1986.

M. Vilain (with H. Kautz), "Constraint Propagation Algorithms for Temporal Reasoning,"

Conference of the American Association for Artificial Intelligence, Philadelphia, Pa.,

August 1986.

M. Vilain, "Recent and Forthcoming Developments in KL-Two," MIT Workshop on

Terminological Languages, MIT, Cambridge, Ma., July 1986.

M. Vilain, "Medium Grain Parallelism for Knowledge Representation," Brown University,

Providence, Rhode Island, May 1987.

M. Vilain, "Parallel Truth Maintenance Techniques." Presentation given at the DARPA

Natural Language Workshop, SRI International, November 11, 1987. Also presented at

XEROX Palo Alto Research Center and at BBN Labs.

M. Vilain, "A Parallel Truth Maintenance System," AAAI Workshop on Parallelism in

Machine Intelligence, St. Paul, Mn., August 1988.

8.2 List of Publications

B. Goodman, Communication and Miscommunication, BBN Lab..tories Inc.,

Cambridge, Ma., Technical Report No. 5681, October 1985.

179

BBN Systems and Technologies Corporation Report No. 6937

B. Goodman, "Repairing Reference Identification Failures by Relaxation," Proceedings of

the 23rd Annual Meeting of the ACL, July 1985.

B. Goodman, "Reference and Reference Identification Failures," Computational

Linguistics, Vol. 12, No. 4, 1986 (a revised version also appears as Rule-Based

Relaxation of Reference Identification Failures, Technical Report No. 396, Center for the

Study of Reading, University of Illinois at Urbana-Champaign, 1986).

B. Goodman, "Reference and Reference Failures," in Proceedings of Theoretical Issues in

Natural Language Processing-3, TINLAP-3, New Mexico State University, Las Cruces,

New Mexico, 1987 (also appears as Technical Report No. 398, Center for the Study of

Reading, University of Illinois at Urbana-Champaign, 1986).

B. Goodman, "Repairing Reference Identification Failures by Relaxation," in

Communication Failure in Dialogue and Discourse, Ronan Reilly (ed), North-Holland,

Amsterdam, 1987.

B. Goodman et. al., Research in Knowledge Representation for Natural Language

Communication and Planning Assistance: Annual Report (18 March 1986 to 31 March

1987, BBN Laboratories Inc., Cambridge, Ma., Technical Report No. 6636, October

1987.

A. Haas, "Possible Events, Actual Events, and Robots," Computational Intelligence, Vol.

I., No. 2, May 1985.

180

Report No. 6937 BBN Systems and Technologies Corporation

A. Haas, "A Syntactic Theory of Belief and Action," Artificial Intelligence, Vol. 28, No. 3,

May 1986.

A. Haas, "The Case for Domain-Specific Frame Axioms," The Frame Problem, Workshop

on Logical Approaches to the Frame Problem, University of Kansas, University of

Kansas, 1987.

E. Hinrichs, "A Compostional Semantics for Directional Modifiers in English - Locative

Case Reopened," Proceedings of the 11th International Conference on Computational

Linguistics, Bonn, West Germany, August 1986.

E. Hinrichs and L. Polanyi, "Pointing the Way: A Unified Treatment of Referential

Gesture in Interactive Discourse," Proceedings of the 22nd Annual Meeting of the Chicago

Linguistics Society, Chicago, 11., 1986.

L. Polanyi, "A Theory of Discourse Structure and Discourse Coherence," Proceedings of

the 21st Annual Meeting of the Chicago Linguistics Society, University of Chicago,

Chicago, Il., 1985.

L. Polanyi, The Linguistic Discourse Model: Towards a Formal Theory of Discourse

Structure, BBN Laboratories Inc., Cambridge, Ma., BBN Technical Report No. 6409,

November 1986.

L. Polanyi, A Formal Syntax of Discourse, Technical Report of the Center for the Study of

Reading, University of Illinois at Urbana-Champaign, 1986.

181

L

... L n I~l lll l l 11 lll

BBN Systems and Technologies Corporation Report No. 6937

R. Scha, B. Bruce, and L. Polanyi, "Discourse Understanding," ii, Encyclopedia of

Artificial Intelligence, S. C. Shapiro (ed.), John Wiley and Sons, New York, 1986 (also

appears as Technical Report No. 391, Center for the Study of Reading, University of

Illinois at Urbana-Champaign, 1986).

J. Schmolze, "Physics for Robots," Proceedings of the Conference of the American

Association for Artificial Intelligence, Philadelphia, Pa., August 1986.

J. Schmolze, Physics for Robots, BBN Laboratories Inc., Cambridge, Ma., Technical

Report No. 6222, September 1987.

C. Sidner, "Plan Parsing for Intended Response Recognition in Discourse," Computational

Intelligence, Vol. 1, No. 1, March 1985.

C. Sidner, "Discourse Structure and the Proper Treatment of Interruptions," Proceedings

of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, Ca.,

August 1985.

C. Sidner, "Intentions, Attention and the Structure of Discourse," Computational

Linguistics, Vol. 12, No. 3, 1986.

C. Sidner and B. Grosz, "Plans in Discourse," Discourse, Communication and Intention,

MIT Press, Cambridge, Ma., 1988.

182

Report No. 6937 BBN Systems and Technologies Corporation

N. S. Sridharan, Semi-Applicative Programming: Examples of Context-Free Recognizers,

BBN Laboratories Inc., Cambridge, Ma., BBN Technical Report No. 6135, January

1986.

M. Vilain, "The Restricted Language Architecture of a Hybrid Representation System,"

Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los

Angeles, Ca., August 1985.

M. Vilain (with H. Kautz), "Constraint Propagation Algorithms for Temporal Reasoning,"

LProceedings of the Conference of the American Association for Artificial Intelligence,

Philadelphia, Pa., August 1986.

M. Vilain, Heterogenous Concurrency in a MIMD Truth Maintenance System. Position

paper accepted for presentatioP at the AAAI Symposium on Parallel Models of Intelligence,

March 1988.

8.3 Forthcoming Papers

A. Haas, "Sentential Semantics for Propositional Attitudes," accepted for publication in

Computational Intelligence.

C. Sidner and B. Grosz, "Large Distributed Know-How and Acting: Research On

Collaborative Planning", to appear in a book on selected papers from the Workshop on

Distributed Artificial Intelligence, Lake Arrowhead, Ca., 1988.

183

BBN Systems and Technologies Corporation Report No. 6937

B. Grosz, M. Pollack, and C. Sidner, "Computational Models of Discourse," in

Foundations of Cognitive Science, M. Posner (ed.), 1989.

184

Report No. 6937 BBN Systems and Technologies Corporation

Official Distribution List

Contract N00014-85-C-0079

C99ies

Scientific Officer
Head, Information Sciences Division

Office of Naval Research
800 North Quincy Street

Arlington, VA 22217-5000
Attn: Dr. Alan Meyrowitz

Administrative Contracting Officer

Defense Contracts Adm. Services

495 Summer Street

Boston, MA 02210-2184

Attn: Mr. Frank Skieber

Director, Naval Research Laboratory

Attn: Code 2627
Washington, D.C. 20375

Defense Technical Information Center 12

Bldg. 5

Cameron Station
Alexandria, Va. 22314

185

